平面光波导_三层均匀平面光波导_射线分析法

2024-01-12 21:04

本文主要是介绍平面光波导_三层均匀平面光波导_射线分析法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

平面光波导_三层均匀平面光波导_射线分析法

三层均匀平面光波导:

  • 折射率沿 x x x 方向有变化,沿 y y y z z z 方向没有变化
  • 三层:芯区( n 1 n_1 n1) > > > 衬底( n 2 n_2 n2) ≥ \geq 包层( n 3 n_3 n3)
  • 包层通常为空气,即 n 3 = 1 n_3=1 n3=1;芯区与衬底折射率之差通常为 1 0 − 3 ∼ 1 0 − 1 10^{-3}\sim 10^{-1} 103101;芯区一般几微米厚

一、三层均匀平面波导的射线分析法

在这里插入图片描述

三层均匀平面波导的传输路线(也是叠加模型)如上图所示:

  • 它可以看作由斜着向上界面行进的平面波(以 B B ′ BB^\prime BB 为等相位面的平面波),与反射2次后再次斜向上运动的平面波(以 C C ′ CC^\prime CC 为等相位面的平面波)相互叠加而成
  • 入射光满足全反射条件仅仅能使光被约束在波导中,是形成导波的必要条件(还有是否可以传输)
  • 因为导波由2个平面波相叠加,所以当两平面波到达同一地点时,只有满足相位相同的条件,才会相干相长,维持光在波导中传播。否则会相互抵消,导致无法传播

传输条件——相干叠加条件的推导:

约束条件: A B − A ′ B ′ AB-A^\prime B^\prime ABAB 平面波(以 B B ′ BB^\prime BB 为等相位面的平面电磁波)向前传播,第一个发生第二次反射的点( C C C 点)其发生全反射相移后仍应与前一入射平面波保持同相。

记全反射在两界面带来的相移分别为: − 2 ϕ 12 -2\phi_{12} 2ϕ12 − 2 ϕ 13 -2\phi_{13} 2ϕ13

因为 B B ′ BB^\prime BB C C ′ CC^\prime CC 是等相位面,需要 A B A ′ B ′ ABA^\prime B^\prime ABAB 平面波与 C D C ′ D ′ CDC^\prime D^\prime CDCD 平面波相干相长,因此计算 B ′ C ′ B^\prime C^\prime BC B C BC BC 分别带来的光程,且两光程差应为 2 π 2\pi 2π 的整数倍

其中入射光的初始状况、三层均匀平面波导的各层折射率、波导芯区厚度是易于获取的参数,各表达式最终应当尽可能使用这三类参数表达

  • B ′ → C ′ B^\prime\to C^\prime BC 的光程: n 1 B ′ C ′ ‾ = n 1 B C ′ ‾ sin ⁡ θ = n 1 ( P C ‾ − P Q ‾ ) sin ⁡ θ = n 1 ( d tan ⁡ θ − d / tan ⁡ θ ) sin ⁡ θ n_1\overline{B^\prime C^\prime}=n_1\overline{BC^\prime}\sin\theta=n_1(\overline{PC}-\overline{PQ})\sin\theta=n_1\left( d\tan\theta-d/\tan\theta \right)\sin\theta n1BC=n1BCsinθ=n1(PCPQ)sinθ=n1(dtanθd/tanθ)sinθ

    其总相移为: k 0 n 1 ( d tan ⁡ θ − d / tan ⁡ θ ) sin ⁡ θ k_0n_1\left( d\tan\theta-d/\tan\theta \right)\sin\theta k0n1(dtanθd/tanθ)sinθ

  • B → C B\to C BC 的光程: n 1 B C ‾ = n 1 ⋅ d / cos ⁡ θ n_1\overline{BC}=n_1\cdot d/\cos\theta n1BC=n1d/cosθ

    其在界面 1,2 和界面 1,3 分别发生了一次全反射,带来的相移为 − 2 ϕ 12 − 2 ϕ 13 -2\phi_{12}-2\phi_{13} 2ϕ122ϕ13

    其总相移为: k 0 n 1 ⋅ d / cos ⁡ θ − 2 ϕ 12 − 2 ϕ 13 k_0n_1\cdot d/\cos\theta-2\phi_{12}-2\phi_{13} k0n1d/cosθ2ϕ122ϕ13

此时两平面波相干相长即要求:
k 0 n 1 ⋅ d / cos ⁡ θ − 2 ϕ 12 − 2 ϕ 13 − k 0 n 1 ( d tan ⁡ θ − d / tan ⁡ θ ) sin ⁡ θ = 2 m π m = 0 , 1 , 2 , ⋯ k_0n_1\cdot d/\cos\theta-2\phi_{12}-2\phi_{13}-k_0n_1\left( d\tan\theta-d/\tan\theta \right)\sin\theta=2m\pi\quad m=0,1,2,\cdots k0n1d/cosθ2ϕ122ϕ13k0n1(dtanθd/tanθ)sinθ=2m=0,1,2,

此式只与三层平面均匀波导的厚度、折射率,入射光的入射角、波数有关;其分立的解对应导波的不同模式

将上式简记为:
κ d = m π + ϕ 12 + ϕ 13 (模式的本征方程/特征方程) \kappa d=m\pi+\phi_{12}+\phi_{13} \tag{模式的本征方程/特征方程} κd=+ϕ12+ϕ13(模式的本征方程/特征方程)

  • κ = k x = n 1 k 0 cos ⁡ θ = n 1 2 k 0 2 − β 2 = k 0 n 1 2 − N 2 \kappa=k_x=n_1k_0\cos\theta=\sqrt{n_1^2k_0^2-\beta^2}=k_0\sqrt{n_1^2-N^2} κ=kx=n1k0cosθ=n12k02β2 =k0n12N2

  • 模折射率/有效折射率: N = β / k 0 N=\beta/k_0 N=β/k0

  • β \beta β 为传播常数。通过模式的本征方程/特征方程可以求出不同模式的传播常数


对于 TE、TM,其全反射相移公式为:
r T E = E ⃗ 0 ′ E ⃗ 0 = n 1 cos ⁡ θ 1 − n 2 2 − n 1 2 s i n 2 θ 1 n 1 cos ⁡ θ 1 + n 2 2 − n 1 2 s i n 2 θ 1 = e x p [ − j 2 arctan ⁡ ( n 1 2 sin ⁡ 2 θ 1 − n 2 2 n 1 cos ⁡ θ 1 ) ] = e − j 2 ϕ T E r_{TE}=\frac{\vec E_0^\prime}{\vec E_0}=\frac {n_1\cos\theta_1-\sqrt{n_2^2-n_1^2sin^2\theta_1}} {n_1\cos\theta_1+\sqrt{n_2^2-n_1^2sin^2\theta_1}} =exp\left[ {-j2\arctan\left( \frac{\sqrt{n_1^2\sin^2\theta_1-n_2^2}}{n_1\cos\theta_1} \right)} \right] =e^{-j2\phi_{TE}} rTE=E 0E 0=n1cosθ1+n22n12sin2θ1 n1cosθ1n22n12sin2θ1 =exp j2arctan n1cosθ1n12sin2θ1n22 =ej2ϕTE

r T M = H ⃗ 0 ′ H ⃗ 0 = n 2 2 cos ⁡ θ 1 − n 1 n 2 2 − n 1 2 s i n 2 θ 1 n 2 2 cos ⁡ θ 1 + n 1 n 2 2 − n 1 2 s i n 2 θ 1 = e x p [ − j 2 arctan ⁡ ( n 1 2 n 2 2 n 1 2 sin ⁡ 2 θ 1 − n 2 2 n 1 cos ⁡ θ 1 ) ] = e − j 2 ϕ T M r_{TM}=\frac{\vec H_0^\prime}{\vec H_0}=\frac {n_2^2\cos\theta_1-n_1\sqrt{n_2^2-n_1^2sin^2\theta_1}} {n_2^2\cos\theta_1+n_1\sqrt{n_2^2-n_1^2sin^2\theta_1}} =exp\left[ {-j2\arctan\left( \frac{n_1^2}{n_2^2}\frac{\sqrt{n_1^2\sin^2\theta_1-n_2^2}}{n_1\cos\theta_1} \right)} \right] =e^{-j2\phi_{TM}} rTM=H 0H 0=n22cosθ1+n1n22n12sin2θ1 n22cosθ1n1n22n12sin2θ1 =exp j2arctan n22n12n1cosθ1n12sin2θ1n22 =ej2ϕTM

可以简记为:
T E m o d e { ϕ 12 = arctan ⁡ ( P κ ) ϕ 13 = arctan ⁡ ( q κ ) T M m o d e { ϕ 12 = arctan ⁡ ( n 1 2 n 2 2 P κ ) ϕ 13 = arctan ⁡ ( n 1 2 n 3 2 q κ ) TE\ mode \begin{cases} \phi_{12}=\arctan\left( \frac P\kappa \right) \\\\ \phi_{13}=\arctan\left( \frac q\kappa \right) \\ \end{cases} \\\\ TM\ mode \begin{cases} \phi_{12}=\arctan\left( \frac{n_1^2}{n_2^2} \frac P\kappa \right) \\\\ \phi_{13}=\arctan\left( \frac{n_1^2}{n_3^2} \frac q\kappa \right) \\ \end{cases} \\ TE mode ϕ12=arctan(κP)ϕ13=arctan(κq)TM mode ϕ12=arctan(n22n12κP)ϕ13=arctan(n32n12κq)
其本征方程为:
T E : κ d = m π + arctan ⁡ ( P κ ) + arctan ⁡ ( q κ ) T M : κ d = m π + arctan ⁡ ( n 1 2 n 2 2 P κ ) + arctan ⁡ ( n 1 2 n 3 2 q κ ) TE:\kappa d=m\pi+\arctan\left( \frac P\kappa \right)+\arctan\left( \frac q\kappa \right) \\\\ TM:\kappa d=m\pi+\arctan\left( \frac{n_1^2}{n_2^2} \frac P\kappa \right)+\arctan\left( \frac{n_1^2}{n_3^2} \frac q\kappa \right) TE:κd=+arctan(κP)+arctan(κq)TM:κd=+arctan(n22n12κP)+arctan(n32n12κq)

这篇关于平面光波导_三层均匀平面光波导_射线分析法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/599154

相关文章

求空间直线与平面的交点

若直线不与平面平行,将存在交点。如下图所示,已知直线L过点m(m1,m2,m3),且方向向量为VL(v1,v2,v3),平面P过点n(n1,n2,n3),且法线方向向量为VP(vp1,vp2,vp3),求得直线与平面的交点O的坐标(x,y,z): 将直线方程写成参数方程形式,即有: x = m1+ v1 * t y = m2+ v2 * t

高斯平面直角坐标讲解,以及地理坐标转换高斯平面直角坐标

高斯平面直角坐标系(Gauss-Krüger 坐标系)是基于 高斯-克吕格投影 的一种常见的平面坐标系统,主要用于地理信息系统 (GIS)、测绘和工程等领域。该坐标系将地球表面的经纬度(地理坐标)通过一种投影方式转换为平面直角坐标,以便在二维平面中进行距离、面积和角度的计算。 一 投影原理 高斯平面直角坐标系使用的是 高斯-克吕格投影(Gauss-Krüger Projection),这是 横

n条直线最多能划分出多少个平面?

N条直线,两两相交,其交点各不不同,则产生的交点数目为N个数中取2个数的组合; 同时,也只有这种情况下(两两相交,也交点不同),分割的平面数最多, 数目为: 2 + (N-1)(N+2)/2.  这里求最少平面数没有意义,因为最少平面数就是N+1, 即N条直线两两平行的时候,分割的平面最少。 举例: 1条直线分割平面数最多为2; a1 = 2 2条直线分割平面数最多为4;

2300年都无人能知有长度不同的伪≌射线

黄小宁 【摘要】自有射线概念后的2300年里一直无人能知有长度不同的射线。保距变换和≌图概念是能放大无穷大倍的思维望远镜使人能一下子看到有长度不同的伪重合、伪≌射线。 变量x所取各数也均由x代表,x代表其变域(x所有能取的数组成的集)内任一元。设集A={x}表A各元均由x代表,{x}中变量x的变域是A。其余类推。“实数集”R所有非负元x≥0组成R+={x≥0},这里的x≥0不是表示x可取一切非负

【机械手控制】基于matlab 4-RPR平面机械手的可操作性、工作空间分析和路径跟踪【含Matlab源码 7422期】

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信或扫描文章底部QQ二维码。 🍎个人主页:Matlab凤凰涅槃 🏆代码获取方式:扫描文章底部QQ二维码 ⛳️座右铭:行百里者,半于九十。 更多Matlab路径规划仿真内容点击👇 ①Matlab路径规划(凤凰涅槃版) ⛳️关注微信公众号Matlab王者助手或Matlab海神之光,更多资源等你来!!

设计之道:ORM、DAO、Service与三层架构的规范探索

引言: 实际开发中,遵守一定的开发规范,不仅可以提高开发效率,还可以提高项目的后续维护性以及项目的扩展性;了解一下本博客的项目设计规范,对项目开发很有意义 一、ORM思想 ORM(Object-Relational-Mapping)在对象模型和关系型模型之间做一个映射(转换)。 目的是为了解决面向对象编程语言的发展和关系型数据库的发展不匹配的问题 可以理解为: 将Java中的数据结

X 射线测厚仪-高效精准,厚度测量的卓越之选

在现代工业的舞台上,对精准度和效率的追求从未停歇。而 X 射线测厚仪,宛如一颗璀璨的明星,以其高效精准的特质,成为厚度测量的卓越之选。 X 射线测厚仪,是科技与智慧的完美结晶。它凭借先进的 X 射线技术,如同一双透视万物的慧眼,能够轻松穿透各种材料,将厚度信息精准地呈现在人们面前。无论是坚硬的金属板材,还是柔软的塑料制品,亦或是富有弹性的橡胶制品,在它的审视下,厚度无处遁形。 高效,是它的另一

波导模式分析2 用于圆TE01模式高功率传输线的大型多模波导滤波器

摘要: 一种对于大型多模波导滤波器的设计方法,其能衰减掉(deteriorate)不想要的模式而不影响所需要的工作模式,被提出来抑制用于圆TE01模式高功率传输线的受限模式谐振。为了从TE10模式中分离出不期望的模式,引入了一种形变圆波导。在波导中的本征模式通过微扰分析理论推断,并且研究了一些公共模式的传输特性。此分析显示在工作TE01模式和其他模式之间通过变形圆波导可以获得显然的模式间隔,特别

某PO手机市场竞争分析,巧用波特五力分析法找出核心竞争力!

某PO手机主要从事手机的生产与销售,最近推出了新款 Reno 系列 5G 手机。当前,苹果占据了高端市场,华为占据了中高端市场,而某 PO 手机则在剩余市场中与某 VO 和某米竞争。近年来,某 PO手机凭借中端 R 系列逐步取得市场份额。在这样的背景下,我们运用波特五力模型来分析某 PO 手机的外部环境。 1、波特五力模型案例分析:某PO手机 1.1 新进入者的威胁 由于电子产品市场竞争激烈

什么叫做 “沿着晶体平面偏析”

“沿着晶体平面偏析”指的是在晶体材料中,某些元素或原子优先聚集或沉积在特定的晶体平面上,而不是均匀地分布在整个晶体中。这种现象通常发生在合金、半导体或其他多元材料的制备和热处理过程中。 关键点解释: 晶体平面:晶体是由原子按照特定的空间排列构成的,晶体平面是沿着某个特定方向上的原子排列面。这些平面通常根据晶体的对称性和结构特点来定义,如金属材料的{111}或{100}晶面。 偏析:在材料科