【网络安全】【密码学】【北京航空航天大学】实验三、数论基础(下)【C语言实现】

本文主要是介绍【网络安全】【密码学】【北京航空航天大学】实验三、数论基础(下)【C语言实现】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

实验三、数论基础(下)

一、实验内容

1、中国剩余定理(Chinese Remainder Theorem)

(1)、算法原理

m1, m2, … mk 是一组两两互素的正整数,且 M = m1 · m2 · … · mk 为它们的乘积, 则如下的同余方程组:
x == a1 (mod m1)
x == a2 (mod m2)

x == ak (mod mk)

对于模M有唯一的解 x = (M · e1 · a1 / m1 + M · e2 · a2 / m2 + … + M · ek · ak / mk) (mod M)
其中 ei 满足 M / mi · ei == 1(mod mi)

(2)、算法流程

本算法的大致流程如下图所示:

在这里插入图片描述

(3)、算法的代码实现(C语言)

#include <stdio.h>int reverse(int k, int m);  // 函数,返回k模m的逆元int main()
{int i;int r;       // 方程组中的方程个数 (不能超过100)int b[100];  // 余数数组int m[100];  // 模数数组int mul = 1;int M[100];  // M数组int M1[100];  // M'数组int x = 0;  // 方程组的根//	printf("%d", reverse(3, 7));  // 一行测试代码printf("请输入方程的个数:");scanf_s("%d", &r);  // 选用安全的输入函数,避免可能的栈溢出(攻击)printf("请输入 %d 个余数,之间以空格分隔:", r);for(i = 0;i < r;i ++){scanf("%d", &b[i]);}printf("请输入 %d 个模数,之间以空格分隔:", r);for(i = 0;i < r;i ++){scanf("%d", &m[i]);mul *= m[i];}for(i = 0;i < r;i ++){M[i] = mul / m[i];}for(i = 0;i < r;i ++){M1[i] = reverse(M[i], m[i]);}for(i = 0;i < r;i ++){x += M1[i] * M[i] * b[i];}x %= mul;printf("此同余方程组的解(模%d)是:", mul);printf("%d", x);return 0;
}int reverse(int k, int m)
{int i;for(int i = 1;i < m;i ++){if(k * i % m == 1){return i;}}return -1;
}

(4)、算法测试

测试点1:

x == 1 (mod 4)
x == 2 (mod 5)
x == 3 (mod 7)

运行时截图:

在这里插入图片描述
解为 x == 17 (mod 140)

测试点2:

x == 7 (mod 23)
x == 9 (mod 28)
x == 16 (mod 33)

运行时截图:

在这里插入图片描述

解为 x == 19189 (mod 21252)

测试点3:

x == 23 (mod 283)
x == 28 (mod 102)
x == 33 (mod 35)

运行时截图:
在这里插入图片描述

解为 x == 43888 (mod 1010310)

2、素性检测算法(Miller-Rabin’s Test for Primality)

(1)、算法原理
根据费马小定理,设 p素数a整数,且满足 (a, p) = 1, 则满足 a ^ (p - 1) = 1 (mod p), 以及二次探测定理:如果 p 是一个素数,且 0 < x < p, 且同余方程 x ^ 2 = 1 (mod p) 成立,那么 x = 1x = p - 1米勒·拉宾 Miller-Rabin 素性检测算法是基于以上两个定理的随机化算法,用于判断一个整数是合数还是素数。

(2)、算法流程

本算法的大致流程如下图所示:

在这里插入图片描述

(3)、算法的代码实现(C语言)

#include <stdio.h>
#include <stdlib.h>typedef long long unsigned LLU;
typedef int BOOL;#define TRUE 1
#define FALSE 0// 长整数快速模乘算法
LLU quickMult(LLU a, LLU b, LLU c)
{LLU result = 0;while(b > 0) {if(b & 1)result = (result + a) % c;a = (a + a) % c;b >>= 1;}return result;
}// 长整数快速幂取模算法
LLU quickPower(LLU a, LLU b, LLU c) 
{LLU result = 1;while(b > 0) {if(b & 1)result = quickMult(result, a, c);a = quickMult(a, a, c);b >>= 1;}return result;
}// 米勒·拉宾素性检验算法(单次测试)
BOOL MillerRabinPrimeTest(LLU n) 
{LLU d, x, newX, a = 1;int i;for (i = 0; i < 4; i ++)a *= rand();a = a % (n - 3) + 2;  // 随机地选取一个a∈[2,n-2]int s = 0;  // s为d中的因子2的幂次数。d = n - 1;while ((d & 1) == 0) {   // 将d中的因子2全部提取出来。s ++;d >>= 1;}x = quickPower(a, d, n);for (i = 0; i < s; i ++) { // 进行s次二次探测newX = quickPower(x, 2, n);if (newX == 1 && x != 1 && x != n - 1)return FALSE;  // 用二次定理的逆否命题,此时n被确定为合数。x = newX; }if (x != 1)return FALSE;  // 用费马小定理的逆否命题判断,此时x=a^(n-1) (mod n),那么n确定为合数。return TRUE; //用费马小定理的逆命题判断。能经受住考验至此的数,大概率为素数。
}//经过连续特定次数的Miller-Rabin测试后,
//如果返回值为TRUE表示n为素数,返回值为FALSE表示n为合数。
BOOL isPrimeByMR(LLU n) 
{if((n & 1) == 0)return FALSE;int i;for (i = 0; i < 100; i ++)if(MillerRabinPrimeTest(n) == FALSE)return FALSE;return TRUE;
}// 主函数
int main()
{LLU n;printf("请输入待判断素性的整数:");scanf("%lld", &n);BOOL result;result = isPrimeByMR(n);printf("\n------判断中......------\n\n");if(result == TRUE)printf("%llu 是素数", n);elseprintf("%llu 是合数", n);return 0;
}

(4)、算法测试

测试点1:
判断1000023是素数还是合数。(答:合数

运行时截图:

在这里插入图片描述

测试点2:
判断1000033是素数还是合数。(答:素数

运行时截图:

在这里插入图片描述
测试点3:
判断100160063是素数还是合数。(答:合数

运行时截图:

在这里插入图片描述测试点4:
判断1500450271是素数还是合数。(答:素数

运行时截图:

在这里插入图片描述

说明:算法为概率性判断,即可能将合数错判为素数(对计算机来说,已在极短的时间内完成了100次重复的MR测试,故该错判的概率极低),但绝无可能将素数错判为合数。

二、参考文献

1、《密码编码学与网络安全——原理与实践(第七版)》(Cryptography and Network Security, Principles and Practice, Seventh Edition),【美】威廉 斯托林斯 William Stallings 著,王后珍等 译,北京,电子工业出版社,2017年12月。

2、《密码学实验教程》,郭华 刘建伟等 主编,北京,电子工业出版社,2021年1月。

这篇关于【网络安全】【密码学】【北京航空航天大学】实验三、数论基础(下)【C语言实现】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/598156

相关文章

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

前端原生js实现拖拽排课效果实例

《前端原生js实现拖拽排课效果实例》:本文主要介绍如何实现一个简单的课程表拖拽功能,通过HTML、CSS和JavaScript的配合,我们实现了课程项的拖拽、放置和显示功能,文中通过实例代码介绍的... 目录1. 效果展示2. 效果分析2.1 关键点2.2 实现方法3. 代码实现3.1 html部分3.2