搭建算法日志自检小系统

2024-01-12 13:04

本文主要是介绍搭建算法日志自检小系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🥒 前言

目前演示的是一个工具,但如此,未来完成有潜力可以演变为一整套系统。

👑现场人员自检失败表计点位教程V2.0

NOTE: 如果没有logfiles-meter-tool“目录请联系我们进行提供

👇

进入<dist>目录

👇

【关键步骤一】、将我们需要分析的日志文件放到该目录中

👇

【关键步骤二】、配置<日志名称><任务ID>

config.ini配置文件内容和详细解析如下图:

@pararm:[logfile_path]是存放日志的路径,但由于与<应用程序>处于同目录下,所以相当于日志名,该日志包含您刚跑完测试的日志内容。
@pararm:[work_id] 是您任务的序号,如下图,Ftp图片路径下包含”task“/"Task"的字符串,也就是灰色框框住的那一串正式您此次任务的序号。

👇

【关键步骤三】、运行<应用程序>

👇

【异常如果出现下面的红框信息,是因为任务ID输入错了,没有匹配结果,根据提示操作。【如果有匹配结果,列出来的任务id后面会打√的。】

正常】正常运行终端结果

👇

自动生成自检报表meterLog_checking-<任务ID>.txt,位于<分析报告生成处>目录下

👇

里面部分关键内容如下:

👇

接下来大家请对照这张表,找到【需要现场人员自检】【错误】进行搜索排查,有多个,可以从上往下慢慢来。

👇

以【通用类】<序号7>"该点位没有录入"作为例子,打开自检文本meterlog_checking.txt,搜索指定错误。

👇

NOTE:如果出现无需现场人员自检的错误,需要提供一下日志文件,可能后续还需提供图片我们这边进行优化。

NOTE:如果点位出现多次,只会取最后一次也就是最新一次的结果。

🍉一些使用样例图: 

👑Code

# -*- coding: utf-8 -*-
'''
参考diamagnetic:
# 兰江
python3 meterPoint_Self-Checking_sys.py -p meterlog -t 30M00000036658634_task1703485183168_20231225141946
# 金鼎
python3 meterPoint_Self-Checking_sys.py -p meterlog -t 30M00000036658634_task1703485183168_20231225141947
'''
import os
import re
import json
import configparserdef get_settings():   config = configparser.ConfigParser()config.read('./config.ini')log_file = config.get('settings', 'logfile_path')work_id = config.get('settings', 'work_id')return log_file, work_iddef extract_debug_segments(log_file):debug_segments = []with open(log_file, 'r', encoding='utf-8') as file:lines = file.readlines()start_line = Noneend_line = Nonesegment = []for i, line in enumerate(lines):if 'Debug' in line or '收到请求' in line or '数据库信息' in line:if start_line is None:start_line = isegment.append(line.strip())   elif '结果放入队列待发送' in line:if start_line is not None:end_line = isegment.append(line)debug_segments.append([segment, start_line, end_line])segment = []start_line = Noneend_line = Nonereturn debug_segments
def process_request(request_str):target_index = request_str.index("{")# 按照":"分割字符串split_str = request_str[target_index:]# 获取分割后数组中最后一个索引所保存的信息json_str = split_str.strip().replace("—", "-").replace("'", "\"")objectList_request_str = json.loads(json_str)['objectList'][0]# for k in objectList_request_str:#     print(k)return objectList_request_strdef get_pointList_length(json_str):pattern = r"'Position': '(\[.*?\])'"matches = re.search(pattern, json_str)if matches is None:return 0position_list = json.loads(matches.group(1))# print("position_list:", position_list)return len(position_list)def process_sql(json_str):json_str = json_str[json_str.index("MinValue"):]json_str = "{'" + json_strjson_str = json_str.replace("'", "\"")sql_dict = json.loads(json_str)return sql_dictdef process_result(json_str):json_str = json_str[json_str.index("code"):-5]json_str = "{'" + json_str# print(json_str)json_str = json_str.replace("'", "\"")json_str = json_str.replace("None", "null")sql_dict = json.loads(json_str)return sql_dictdef contains_digit(string):pattern = r'\d'  # 正则表达式模式,匹配任意数字if re.search(pattern, string):return Trueelse:return Falsedef get_path_separator(path):if '/' in path:return '/'elif '\\' in path:return '\\'elif '\\' * 2 in path:return '\\\\'else:return Nonedef extract_work_path_tool(goal_str):split_str = get_path_separator(goal_str)pathIdx = -1splitPaths = goal_str.split(split_str)for idx, ss in enumerate(splitPaths):if ss == 'CCD':pathIdx = idxif pathIdx == -1:raise Exception("您的任务路径中没有CCD路径")work_path = splitPaths[pathIdx-1]return work_pathif __name__ == "__main__":print("---------------------------------------------------------------------")# 摄像机偏移严重+模糊Error_withoutDetctor = []# 未识别出指针Error_withoutPointer = []# 读取ftp图失败Error_loadftp = []# minIO无图Error_withoutMinioImage = []# minIO错图Error_minioErrorImage = []# 点位未录入Error_withoutId = []# 表计类型录入错误Error_clsType = []# 最大最小值设置错误Error_minMaxSet = []# 最大最小值未设置Error_withoutMinMax = []# 未打刻度点位Error_withoutPointList = []# 刻度打点错误Error_PointList = []# 未识别到任何油面表!Error_ymb = []# 画框与推理出来的油面表无匹配Error_withoutYmbMatch = []# OCR没有检测出数字Error_ocrRec = []# OCR没有检测出表盘Error_ocrDet = []# ===========================核# 获取命令行参数log_file, work_id =  get_settings()debug_segments = extract_debug_segments(log_file)error_num = 0# not_reading_num = 0# type_num = 0ymb_num, sxb_num, bj_num = 0, 0, 0ymb_errorNum, sxb_errorNum, bj_errorNum = 0, 0, 0# 过滤一遍只剩下最新的filter_schem = {}piNums_schem = {}not_del_ids = []# 任务计算workNUms_schem = {}for idx, segment in enumerate(debug_segments):strat_line = segment[1]end_line = segment[2]for line in segment[0]:if "收到请求" in line:# print('【请求信息】: ',end='')objectList_request_str = process_request(line)# 任务IDwork_path = extract_work_path_tool(objectList_request_str['imageUrlList'][0])if not work_path in workNUms_schem:workNUms_schem[work_path] = 1else:workNUms_schem[work_path] += 1if work_path != work_id:break#点位IDextract_objectId = objectList_request_str['objectId']if not extract_objectId in filter_schem.keys():# 新增filter_schem[extract_objectId] = idxpiNums_schem[extract_objectId] = 1else:# 更新filter_schem[extract_objectId] = idxpiNums_schem[extract_objectId] += 1not_del_ids.append(idx)breakprint('|任务id                                                        |数量')print("---------------------------------------------------------------------")for wnn in workNUms_schem:if work_id == wnn:print(wnn, '     |',workNUms_schem[wnn],end='   ✔\n')else:print(wnn, '     |',workNUms_schem[wnn])print('*********************************************************************')if not work_id in workNUms_schem:print("[告警]任务ID有误,本日志中无匹配任务。上方已列出所有任务ID以及他们的数量!请根据上面列出的任务ID,输入正确的任务ID。")print('*********************************************************************')work_id = input('[Input]:')print("[提示]此次任务ID已经修改为:<{}>".format(work_id))# 重置filter_schem = {}piNums_schem = {}not_del_ids = []for idx, segment in enumerate(debug_segments):strat_line = segment[1]end_line = segment[2]for line in segment[0]:if "收到请求" in line:objectList_request_str = process_request(line)# 任务IDwork_path = extract_work_path_tool(objectList_request_str['imageUrlList'][0])if work_path != work_id:break# 点位IDextract_objectId = objectList_request_str['objectId']if not extract_objectId in filter_schem.keys():# 新增filter_schem[extract_objectId] = idxpiNums_schem[extract_objectId] = 1else:# 更新filter_schem[extract_objectId] = idxpiNums_schem[extract_objectId] += 1not_del_ids.append(idx)breakprint('*********************************************************************')# print(piNums_schem)# 找到第一次出现重复点位的位置print("此次任务ID:<{}>中".format(work_id))idsNums_result1 = len({key: value for key, value in piNums_schem.items() if value == 1})print("点位 [=1] 的数量:",idsNums_result1) idsNums_result2 = len({key: value for key, value in piNums_schem.items() if value > 1})print("点位 [>1] 的数量:",idsNums_result2)  print('*********************************************************************')# print(filter_schem, len(filter_schem)) # ------------------过滤结束sumWorkNum, filter_workId_num, filter_objectId_num = 0, 0, 0for idx, segment in enumerate(debug_segments):# print(segment[0],'\n',len(segment[0]))error_flag = FalseftpLoad_flag = False# print('Start Line:', segment[1])# print('End Line:', segment[2])for line in segment[0]:if "收到请求" in line:# print('【请求信息】: ',end='')objectList_request_str = process_request(line)extract_objectId = objectList_request_str['objectId']# print(extract_objectId)# print(objectList_request_str['imageUrlList'][0], work_id)# 过滤掉【不同任务】if not work_id == extract_work_path_tool(objectList_request_str['imageUrlList'][0]):filter_workId_num += 1break# 过滤掉【同任务相同点位取最新】if ( piNums_schem[extract_objectId] > 1 ) and ( idx != filter_schem[extract_objectId] ):# print(idx, filter_schem[extract_objectId])filter_objectId_num += 1break# 这里才是没被break的真正点位数量sumWorkNum += 1elif '数据库信息' in line:# print(line)if line.split("【数据库信息】")[-1] == '{}':# 数据库信息为空# print('*pointList_length:0')# print('{}')Error_withoutId.append(extract_objectId)error_num += 1breakelse:# 数据库有信息pointList_length = get_pointList_length(line)sql_schem = process_sql(line)MinValue = sql_schem['MinValue']MaxValue = sql_schem['MaxValue']meter_type = sql_schem['AlgorithmType']ImagePath = sql_schem['ImagePath']if meter_type == 'meter_v5':bj_num += 1if meter_type == 'meter_ywj':ymb_num += 1if meter_type == 'paddleocr':sxb_num += 1if meter_type == 'meter_v5':if len(MinValue)== 0 or len(MaxValue) == 0:Error_withoutMinMax.append(extract_objectId)MinValue = float(0)MaxValue = float(100)error_flag = Trueelse:MinValue = float(MinValue)MaxValue = float(MaxValue)# 表计类型录入错误(如果打点了,但表计类型不是meter_v5)if meter_type != 'meter_v5' and pointList_length != 0:Error_clsType.append(extract_objectId)error_flag = True# 未打刻度点位if meter_type == 'meter_v5' and pointList_length == 0:Error_withoutPointList.append(extract_objectId)error_flag = True# print(sql_schem, end=',')# print("*pointList_length:", pointList_length)elif '结果放入队列待发送' in line:result_schem = process_result(line)# print('【结果队列信息】:',end='')# print(result_schem)if result_schem['code'] == '2001':Error_loadftp.append(extract_objectId)ftpLoad_flag = Trueerror_flag = Truebreakif result_schem['desc'] == '未识别到任何油面表!':error_flag = TrueError_ymb.append(extract_objectId)else:splitContent = line.split("【Debug】")[-1]if "成功检测到表盘!表盘信息是" in splitContent:det_clsType = splitContent.split(":")[-1].strip().strip("").strip("[]").strip()if splitContent.split(":")[-1].strip().strip("") == "[]":Error_withoutDetctor.append(extract_objectId)error_flag = Trueif not 'sxb' in det_clsType and meter_type == 'paddleocr':Error_ocrDet.append(extract_objectId) error_flag = Trueif 'ywb' in det_clsType:ywb_minMax = [[-20, 140],[0, 160]]iter_minMax = [MinValue, MaxValue]if not iter_minMax in ywb_minMax:Error_minMaxSet.append(extract_objectId)error_flag = Trueelif 'xldlb' in det_clsType:xldlb_minMax = [[0, 3.0],[0, 10],[0, 9],[0, 1]]iter_minMax = [MinValue, MaxValue]if not iter_minMax in xldlb_minMax:Error_minMaxSet.append(extract_objectId)error_flag = True# if '动作次数' in splitContent:#     print(splitContent)# if '泄漏电流值' in splitContent:#     print(splitContent)if 'OCR没有检测出数字' in splitContent:Error_ocrRec.append(extract_objectId)error_flag = Trueif "没识别出指针" in splitContent:Error_withoutPointer.append(extract_objectId)error_flag = True# 画框与推理出来的油面表无匹配if '画框与推理出来的油面表无匹配' in splitContent:Error_withoutYmbMatch.append(extract_objectId)error_flag = Trueif len(ImagePath) == 0 or "MinIo中缺失该点位基准图" in splitContent:Error_withoutMinioImage.append(extract_objectId)error_flag = True# 用于验证if '读数结果' in splitContent and not contains_digit(splitContent):# not_reading_num +=1# 验证后 无读数个数和错误个数基本一致->代表验证成功# print(not_reading_num)continueif error_flag and not ftpLoad_flag: if meter_type == 'meter_v5':bj_errorNum += 1if meter_type == 'meter_ywj':ymb_errorNum += 1if meter_type == 'paddleocr':sxb_errorNum += 1error_num += 1elif error_flag and ftpLoad_flag:error_num += 1meter_type = ''print("错误总数比:【{}/{}】-> 即正确率:{}%".format(error_num,sumWorkNum,round((1-error_num/sumWorkNum)*100, 2)))# ===========================核# 写入# with open('meterLog_checking.txt', 'w') as output_file:saveLogFile_path = './分析报告生成处'if not os.path.exists(saveLogFile_path):os.makedirs(saveLogFile_path)with open(os.path.join(saveLogFile_path,'meterLog_checking-{}.txt'.format(work_id)), 'w', encoding='utf-8') as output_file:output_file.write('您这次序号为[{}]的任务:\n---------------------------------\n一共测试表计数量:[{}]个, 错误点位为:[{}]个, 未打点个数为:[{}]。\n<在此之中>\n,指针类表计成功占[{}/{}]个\n,油面表成功占[{}/{}]个\n,数显表成功占[{}/{}]个。'.format(work_id,sumWorkNum,error_num,len(Error_withoutId),bj_num - bj_errorNum, bj_num,ymb_num - ymb_errorNum, ymb_num, sxb_num - sxb_errorNum, sxb_num))# output_file.write("-> 即正确率:{}%".format(error_num,sumWorkNum,round((1-error_num/sumWorkNum)*100, 2)))output_file.write('\n')output_file.write('---------------------------------\n')output_file.write('NOTE:接下来,请您根据所需要查询的错误名称,使用<ctrl+F>的方式进行查询。\n')output_file.write('---------------------------------\n')output_file.write("【错误】可能存在摄像机偏移严重/模糊<数量:{}>:".format(str(len(set(Error_withoutDetctor)))) + "\n")output_file.write("\n".join(set(Error_withoutDetctor)))output_file.write('\n')output_file.write("【错误】未识别出指针<数量:{}>:".format(str(len(set(Error_withoutPointer)))) + "\n") output_file.write("\n".join(set(Error_withoutPointer)))output_file.write('\n')output_file.write("【错误】读取ftp图失败<数量:{}>:".format(str(len(set(Error_loadftp)))) + "\n")output_file.write("\n".join(set(Error_loadftp)))output_file.write('\n')output_file.write("【错误】minIO无图<数量:{}>:".format(str(len(set(Error_withoutMinioImage)))) + "\n")output_file.write("\n".join(set(Error_withoutMinioImage)))output_file.write('\n')output_file.write("【错误】该点位没有录入<数量:{}>:".format(str(len(set(Error_withoutId)))) + "\n")output_file.write("\n".join(set(Error_withoutId)))output_file.write('\n')output_file.write("【错误】表计类型录入错误<数量:{}>:".format(str(len(set(Error_clsType)))) + "\n")output_file.write("\n".join(set(Error_clsType)))output_file.write('\n')output_file.write("【错误】最大最小值未设置<数量:{}>:".format(str(len(set(Error_withoutMinMax)))) + "\n")output_file.write("\n".join(set(Error_withoutMinMax)))output_file.write('\n')output_file.write("【错误】未打刻度点位<数量:{}>:".format(str(len(set(Error_withoutPointList)))) + "\n")output_file.write("\n".join(set(Error_withoutPointList)))output_file.write('\n')output_file.write("【错误】最大最小值设置错误<数量:{}>:".format(str(len(set(Error_minMaxSet)))) + "\n")output_file.write("\n".join(set(Error_minMaxSet)))output_file.write('\n')output_file.write("【错误】存在刻度打点错误(暂未启用)<数量:{}>:".format(str(len(set(Error_PointList)))) + "\n")output_file.write("\n".join(set(Error_PointList)))output_file.write('\n')for ey in Error_ymb:if ey in Error_withoutYmbMatch:Error_ymb.remove(ey)output_file.write("【错误】未识别到任何油面<数量:{}>:".format(str(len(set(Error_ymb)))) + "\n")output_file.write("\n".join(set(Error_ymb)))output_file.write('\n')output_file.write("【错误】画框与推理结果无匹配<数量:{}>:".format(str(len(set(Error_withoutYmbMatch)))) + "\n")output_file.write("\n".join(set(Error_withoutYmbMatch)))output_file.write('\n')output_file.write("【错误】OCR没有检测出数字<数量:{}>:".format(str(len(set(Error_ocrRec)))) + "\n")output_file.write("\n".join(set(Error_ocrRec)))output_file.write('\n')output_file.write("【错误】OCR没有检测出表盘<数量:{}>:".format(str(len(set(Error_ocrDet)))) + "\n")output_file.write("\n".join(set(Error_ocrDet)))output_file.write('\n')print('<*总共统计数量:{}>\n<*过滤掉的非此次任务ID数量:{}>\n<*过滤掉的重复的点位ID数量:{}>'.format(len(debug_segments),filter_workId_num, filter_objectId_num))print('*********************************************************************')input("Press any key to exit...")

这篇关于搭建算法日志自检小系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/597949

相关文章

Mycat搭建分库分表方式

《Mycat搭建分库分表方式》文章介绍了如何使用分库分表架构来解决单表数据量过大带来的性能和存储容量限制的问题,通过在一对主从复制节点上配置数据源,并使用分片算法将数据分配到不同的数据库表中,可以有效... 目录分库分表解决的问题分库分表架构添加数据验证结果 总结分库分表解决的问题单表数据量过大带来的性能

Java汇编源码如何查看环境搭建

《Java汇编源码如何查看环境搭建》:本文主要介绍如何在IntelliJIDEA开发环境中搭建字节码和汇编环境,以便更好地进行代码调优和JVM学习,首先,介绍了如何配置IntelliJIDEA以方... 目录一、简介二、在IDEA开发环境中搭建汇编环境2.1 在IDEA中搭建字节码查看环境2.1.1 搭建步

什么是cron? Linux系统下Cron定时任务使用指南

《什么是cron?Linux系统下Cron定时任务使用指南》在日常的Linux系统管理和维护中,定时执行任务是非常常见的需求,你可能需要每天执行备份任务、清理系统日志或运行特定的脚本,而不想每天... 在管理 linux 服务器的过程中,总有一些任务需要我们定期或重复执行。就比如备份任务,通常会选在服务器资

TP-LINK/水星和hasivo交换机怎么选? 三款网管交换机系统功能对比

《TP-LINK/水星和hasivo交换机怎么选?三款网管交换机系统功能对比》今天选了三款都是”8+1″的2.5G网管交换机,分别是TP-LINK水星和hasivo交换机,该怎么选呢?这些交换机功... TP-LINK、水星和hasivo这三台交换机都是”8+1″的2.5G网管交换机,我手里的China编程has

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

基于Qt实现系统主题感知功能

《基于Qt实现系统主题感知功能》在现代桌面应用程序开发中,系统主题感知是一项重要的功能,它使得应用程序能够根据用户的系统主题设置(如深色模式或浅色模式)自动调整其外观,Qt作为一个跨平台的C++图形用... 目录【正文开始】一、使用效果二、系统主题感知助手类(SystemThemeHelper)三、实现细节

鸿蒙开发搭建flutter适配的开发环境

《鸿蒙开发搭建flutter适配的开发环境》文章详细介绍了在Windows系统上如何创建和运行鸿蒙Flutter项目,包括使用flutterdoctor检测环境、创建项目、编译HAP包以及在真机上运... 目录环境搭建创建运行项目打包项目总结环境搭建1.安装 DevEco Studio NEXT IDE

CentOS系统使用yum命令报错问题及解决

《CentOS系统使用yum命令报错问题及解决》文章主要讲述了在CentOS系统中使用yum命令时遇到的错误,并提供了个人解决方法,希望对大家有所帮助,并鼓励大家支持脚本之家... 目录Centos系统使用yum命令报错找到文件替换源文件为总结CentOS系统使用yum命令报错http://www.cppc

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境