【深度学习目标检测】十三、基于深度学习的血细胞识别(python,目标检测,yolov8)

2024-01-12 06:28

本文主要是介绍【深度学习目标检测】十三、基于深度学习的血细胞识别(python,目标检测,yolov8),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

血细胞计数是医学上一种重要的检测手段,用于评估患者的健康状况,诊断疾病,以及监测治疗效果。而目标检测是一种计算机视觉技术,用于在图像中识别和定位特定的目标。在血细胞计数中,目标检测技术可以发挥重要作用。

首先,血细胞计数通常需要处理大量的血液样本,手动计数每个细胞既耗时又容易出错。使用目标检测算法,可以自动识别和计数图像中的血细胞,大大提高了计数的准确性和效率。

其次,不同的血细胞(如红细胞、白细胞和血小板)具有不同的形态和大小,这使得使用传统的图像处理方法进行区分和计数变得困难。目标检测算法可以通过训练识别不同血细胞的特征,准确地区分和计数各种血细胞。

此外,目标检测算法还可以处理一些特殊情况,如细胞重叠、不规则形状、染色不均等。这些情况可能会影响手动计数的准确性和可靠性。

最后,使用目标检测进行血细胞计数可以帮助医生更准确地分析和解读血液样本,从而为患者提供更准确的诊断和治疗方案。这有助于提高医疗质量和患者满意度。

综上所述,使用目标检测对血细胞计数具有重要的意义,可以提高计数的准确性和效率,为医生提供更可靠的诊断依据,有助于提高医疗质量。

本文介绍使用yolov8进行血细胞检测的方法,其效果如下图:

一、安装YoloV8

yolov8官方文档:主页 - Ultralytics YOLOv8 文档

安装部分参考:官方安装教程

二、数据集准备

本文使用的数据集是BCCD数据集,该数据集包含3个类别:白细胞(WBC)、红细胞(RBC)和血小板(Platelets)。该数据集共364张图片,其中训练集包含205张图片,验证集包含87张图片,测试集包含72张图片。

示例图片如下:

该数据集为VOC格式,本文提供转换好的BCCD数据集YOLO8格式,可以直接用于训练Yolov8模型。BCCD-yolov8数据集

三、模型训练

1、数据集配置文件

在ultralytics/ultralytics/cfg/datasets目录下添加bccd.yaml,添加以下内容(path修改为自己的路径):

# Ultralytics YOLO 🚀, AGPL-3.0 license
# COCO 2017 dataset http://cocodataset.org by Microsoft
# Example usage: yolo train data=coco.yaml
# parent
# ├── ultralytics
# └── datasets
#     └── coco  ← downloads here (20.1 GB)# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: datasets/medical/BCCD-yolov8  # dataset root dir
train: images/train  # train images (relative to 'path') 118287 images
val: images/val  # val images (relative to 'path') 5000 images
test: images/test  # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794# Classes
names:0: WBC1: RBC2: Platelets

2、修改模型配置文件

新建ultralytics/cfg/models/medical/yolov8.yaml ,添加以下内容:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 3  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 21 (P5/32-large)- [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

3、训练模型

使用如下命令训练模型,相关路径更改为自己的路径,建议绝对路径:

yolo detect train project=medical_output name=bccd_yolo8 exist_ok=True optimizer=auto val=True amp=True epochs=100  imgsz=640 model=ultralytics/cfg/models/medical/yolov8.yaml  data=ultralytics/cfg/datasets/bccd.yaml

4、验证模型

使用如下命令验证模型,相关路径根据需要修改:

yolo detect val model=medical_output/bccd_yolo8/weights/best.pt data=ultralytics/ultralytics/cfg/datasets/bccd.yaml

其精度如下:

# Ultralytics YOLOv8.0.222 🚀 Python-3.9.18 torch-2.1.2+cu118 CUDA:0 (NVIDIA GeForce RTX 4090, 24210MiB)
# YOLOv8 summary (fused): 168 layers, 3006233 parameters, 0 gradients, 8.1 GFLOPs
# val: Scanning /home/yq/aitools/datasets/medical/BCCD-yolov8/labels/val.cache... 87 images, 0 backgrounds, 0 corrupt: 100%|██████████| 87/87 [00:00<?, ?it/s]
#                  Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 6/6 [00:10<00:00,  1.81s/it]
#                    all         87       1137      0.833      0.901      0.908      0.612
#                    WBC         87         87      0.971          1      0.987      0.776
#                    RBC         87        967      0.745      0.832       0.86      0.604
#              Platelets         87         83      0.783       0.87      0.878      0.456
# Speed: 2.3ms preprocess, 6.2ms inference, 0.0ms loss, 6.4ms postprocess per image

四、推理

训练好了模型,可以使用如下代码实现推理,将权重放到同级目录:

from PIL import Image
from ultralytics import YOLO# 加载预训练的YOLOv8n模型
model = YOLO('weights/best.pt')image_path = 'BloodImage_00014.jpg'
results = model(image_path)  # 结果列表# 展示结果
for r in results:im_array = r.plot()  # 绘制包含预测结果的BGR numpy数组im = Image.fromarray(im_array[..., ::-1])  # RGB PIL图像im.show()  # 显示图像im.save('results.jpg')  # 保存图像

本文提供训练好的权重以及推理代码:【BCCD_yolov8训练结果及预测代码】

这篇关于【深度学习目标检测】十三、基于深度学习的血细胞识别(python,目标检测,yolov8)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/597063

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss