基于龙格库塔算法的SIR病毒扩散预测matlab仿真

2024-01-12 01:52

本文主要是介绍基于龙格库塔算法的SIR病毒扩散预测matlab仿真,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

5.完整程序


1.程序功能描述

      基于龙格库塔算法的SIR病毒扩散预测,通过龙格库塔算法求解传染病模型的微分方程。输出易受感染人群数量曲线,感染人群数量曲线,康复人群数量曲线。

2.测试软件版本以及运行结果展示

MATLAB2022a版本运行

3.核心程序

..........................................................
Time1   = 1;                % 设定时间区间的起始点a为1  
Time2   = 215;              % 设定时间区间的终止点b为215  
Ra0     = 2.79;             % 设定基本再生数R_0为2.79  
Popu    = 9969510;  % 设定总人口数  
Popv    = 2387785; % 设定已接种疫苗的人数  
Seck0   = 116;            % 设定初始感染者人数  
Recv0   = 1232727;        % 设定初始康复者人数  
gamma   = 1/10;         % 设定康复率gamma为1/10  
Seck1   = Popu - Popv - Recv0; % 计算初始易感者人数  
beta    = (Ra0*gamma)/(Seck1); % 计算感染率beta  
% 设定初始状态向量y,包括易感者、感染者和康复者  
y       = [Seck1, Seck0, Recv0];  
f       = @(t,y) [-beta*y(1)*y(2); y(2)*(beta*y(1) - gamma); gamma*y(2)]; % 定义微分方程组  [t,w] = func_rungekutta(Time1,Time2,360,y,f); % 使用Runge-Kutta方法求解微分方程组  figure(1)            % 创建第一个图形窗口  
hold on;              % 保持当前图形,以便在同一图形上绘制多条曲线  
plot(t,w,"LineWidth",2); % 绘制曲线,线宽为2  
legend('易受感染','感染','恢复');    
title('新冠-洛杉矶'); % 添加标题  
xlabel('时间 (days)');    
ylabel('人口');   ....................................................................
20  

4.本算法原理

        SIR模型是传染病动力学中经典的数学模型之一,用于描述在封闭人群中疾病的传播过程。模型假设人群被分为三个互不相交的类别:易感者(Susceptible,记为S),感染者(Infected,记为I),和康复者(Recovered,记为R)。SIR模型通过一组常微分方程来描述这三类人群之间的动态变化。SIR模型可以用以下常微分方程组来表示:

SIR模型解释

  • 第一个方程描述了易感者人数的减少,这是由于易感者与感染者接触后被感染。
  • 第二个方程描述了感染者人数的变化,它由两部分组成:新感染的人数(正比于易感者和感染者的乘积)和康复的人数(正比于感染者人数)。
  • 第三个方程描述了康复者人数的增加,它与感染者康复的人数相等。

初始条件和参数

        为了求解SIR模型,需要设定初始条件 (S(0)),(I(0)),和 (R(0)),以及参数 (\beta) 和 (\gamma)。初始条件通常根据疫情爆发初期的观察数据来确定,而参数则需要通过拟合模型到实际数据来估计。

模型求解

        SIR模型可以通过多种方法求解,包括解析解法和数值解法。对于非线性微分方程,通常使用数值解法,如欧拉法、龙格-库塔法等。在实际应用中,由于模型通常是非线性的,因此数值解法更为常用。

预测和控制

        通过求解SIR模型,可以预测未来一段时间内感染者人数的变化趋势,从而为公共卫生决策提供支持。例如,可以预测疫情高峰到来的时间和规模,评估不同干预措施(如社交隔离、疫苗接种等)对疫情发展的影响。

模型局限性

       尽管SIR模型在描述疾病传播方面非常有用,但它也有一些局限性。例如,它假设人群是均匀混合的,忽略了空间结构和人口异质性;它假设康复者不会再次感染,这在某些情况下可能不成立;此外,模型参数可能需要随着疫情的发展而调整。

5.完整程序

VVV

这篇关于基于龙格库塔算法的SIR病毒扩散预测matlab仿真的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/596428

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int

Codeforces Round #240 (Div. 2) E分治算法探究1

Codeforces Round #240 (Div. 2) E  http://codeforces.com/contest/415/problem/E 2^n个数,每次操作将其分成2^q份,对于每一份内部的数进行翻转(逆序),每次操作完后输出操作后新序列的逆序对数。 图一:  划分子问题。 图二: 分而治之,=>  合并 。 图三: 回溯:

基于UE5和ROS2的激光雷达+深度RGBD相机小车的仿真指南(五):Blender锥桶建模

前言 本系列教程旨在使用UE5配置一个具备激光雷达+深度摄像机的仿真小车,并使用通过跨平台的方式进行ROS2和UE5仿真的通讯,达到小车自主导航的目的。本教程默认有ROS2导航及其gazebo仿真相关方面基础,Nav2相关的学习教程可以参考本人的其他博客Nav2代价地图实现和原理–Nav2源码解读之CostMap2D(上)-CSDN博客往期教程: 第一期:基于UE5和ROS2的激光雷达+深度RG