pointpillars点云算法TensorRT环境加速系列三

2024-01-11 01:48

本文主要是介绍pointpillars点云算法TensorRT环境加速系列三,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简述

  在之前的两篇博客基础上,继续写下通过TensorRT加速onnx模型的速度与精度提升了多少,主要是通过github上开源的代码onnx_tensorrt来优化加载onnx进行加速。onnx_tensorrt环境配置有点麻烦,需要相对应的onnx与tensorrt与onnx_tensorrt的版本。我的版本为:onnx = 1.4.0 + tensorrt = 5.1.5.0 + onnx_tensorrt = 5.1 。 NVIDIA官方issues里面有许多关于tensorrt版本的问题,不过建议按照对应的成功版本,按照onnx_tensorrt的步骤进行安装onnx_tensorrt库。当然,文末有我提交docker版本的onnx_tensorrt镜像。另外:我的之前两篇pointpillars点云算法链接如下:

pointpillars点云算法TensorRT环境加速系列一

pointpillars点云算法TensorRT环境加速系列二

  同时,我的主要代码会提交到github上面:点击传送门。如果觉得有用,还请star一下哈。

Compare pfe.onnx ONNX with TensorRT

  首先我们来进行pfe.onnx模型验证,通过两种方式进行加载:1、直接通过onnx方式进行加载预测;2、通过onnx_tensorrt进行加载来优化加速;注:因为之前博客已经对比过onnx加载输出与原始的pytorch模型对比过精度,损失系数在小数点后三位。那么,我们现在直接用onnx_tensorrt加速对比onnx方式即可。

  onnx方式直接加载,请参考我的上一篇博客,下面我们来看下通过onnx_tensorrt加速优化的主要部分代码:

def tensorrt_backend_pfe_onnx():pillar_x = np.ones([1, 1, 12000, 100], dtype=np.float32)pillar_y = np.ones([1, 1, 12000, 100], dtype=np.float32)pillar_z = np.ones([1, 1, 12000, 100], dtype=np.float32)pillar_i = np.ones([1, 1, 12000, 100], dtype=np.float32)num_points_per_pillar = np.ones([1, 12000], dtype=np.float32)x_sub_shaped = np.ones([1, 1, 12000, 100], dtype=np.float32)y_sub_shaped = np.ones([1, 1, 12000, 100], dtype=np.float32)mask = np.ones([1, 1, 12000, 100], dtype=np.float32)pfe_inputs = [pillar_x, pillar_y, pillar_z, pillar_i, num_points_per_pillar,x_sub_shaped, y_sub_shaped, mask]print("pfe_inputs length is : ", len(pfe_inputs))start = time.time()pfe_model = onnx.load("pfe.onnx")engine = backend.prepare(pfe_model, device="CUDA:0", max_batch_size=1)for i in range(1, 1000):pfe_outputs = engine.run(pfe_inputs)end = time.time()print('inference time is : ', (end - start)/1000)print(pfe_outputs)

  Now,看完主要的tensorrt的测试代码,看一下通过onnx_tensorrt优化后的输出与onnx直接加载方式的输出对比吧。

Compare rpn.onnx ONNX with TensorRT

  Ok,我们接下来需要对rpn.onnx来对比tensorrt的加速精度。由于中间涉及pillarscatter网络,我们目前就单独测试rpn.onnx的输出精度与onnx加载rpn.onnx的输出精度。

  rpn.onnx(onnx直接加载的方式同理参考上一篇博客即可)经过tensorrt优化的加速代码如下:

def tensorrt_backend_rpn_onnx():rpn_input_features = np.ones([1, 64, 496, 432], dtype=np.float32)rpn_start_time = time.time()rpn_model = onnx.load("rpn.onnx")engine = backend.prepare(rpn_model, device="CUDA:0", max_batch_size=1)for i in range(1, 1000):rpn_outputs = engine.run(rpn_input_features)rpn_end_time = time.time()print('rpn inference time is : ', (rpn_end_time - rpn_start_time)/1000)print(rpn_outputs)

  我们来对比一下rpn.onnx模型经过onnx直接加载方式与tensorrt优化的对比输出结果:(注:此处的rpn输出与上一篇博客数据不同,主要原因在于这里rpn输入是设置np.ones矩阵,上一篇是直接接PillarScatter网络的输出作为输入。)

ONNX与TensorRT的时间对比如下
Time/spre-processpfe.onnxpillarscatterrpn.onnxpost-processall
onnxN/A0.26035N/A0.198846N/AN/A
tensorrtN/A0.01116N/A0.0187535N/AN/A

  上面表格中可以看出pfe.onnx与rpn.onnx的计算性能提升对比,N/A代表还未进行测试。目前只是单独测试了一下,并没有进行系统测试,数据仅供参考。

onnx_tensorrt的docker镜像源:

docker pull smallmunich/onnx_tensorrt:latest
小结

  由于pfe.onnx与rpn.onnx中间嵌入了一个pillarscatter网络,所以系统测试的话需要对其进行改写,后期可能会将这部分的torch代码修改为纯python版本来进行全程测试吧。目前单独测试pfe.onnx与rpn.onnx精度损失较少,速度优化很大提升。后面,可能系统测试一下整体的速度优化比例,用python代码实现pillarscatter部分网络,具体请等待我的github更新。

参考文献

https://arxiv.org/abs/1812.05784

https://github.com/SmallMunich/nutonomy_pointpillars

https://blog.csdn.net/Small_Munich/article/details/101559424

https://blog.csdn.net/Small_Munich/article/details/102073540

这篇关于pointpillars点云算法TensorRT环境加速系列三的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/592753

相关文章

Java汇编源码如何查看环境搭建

《Java汇编源码如何查看环境搭建》:本文主要介绍如何在IntelliJIDEA开发环境中搭建字节码和汇编环境,以便更好地进行代码调优和JVM学习,首先,介绍了如何配置IntelliJIDEA以方... 目录一、简介二、在IDEA开发环境中搭建汇编环境2.1 在IDEA中搭建字节码查看环境2.1.1 搭建步

在 VSCode 中配置 C++ 开发环境的详细教程

《在VSCode中配置C++开发环境的详细教程》本文详细介绍了如何在VisualStudioCode(VSCode)中配置C++开发环境,包括安装必要的工具、配置编译器、设置调试环境等步骤,通... 目录如何在 VSCode 中配置 C++ 开发环境:详细教程1. 什么是 VSCode?2. 安装 VSCo

鸿蒙开发搭建flutter适配的开发环境

《鸿蒙开发搭建flutter适配的开发环境》文章详细介绍了在Windows系统上如何创建和运行鸿蒙Flutter项目,包括使用flutterdoctor检测环境、创建项目、编译HAP包以及在真机上运... 目录环境搭建创建运行项目打包项目总结环境搭建1.安装 DevEco Studio NEXT IDE

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推