Spark学习笔记(详解,附代码实列和图解)----------RDD(三)持久化

2024-01-10 20:48

本文主要是介绍Spark学习笔记(详解,附代码实列和图解)----------RDD(三)持久化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

六. RDD 持久化

当需要对RDD连续使用时,重复调用是否就可以避免从头再来呢?
在这里插入图片描述

val list = List("Hello Scala", "Hello Spark")val rdd = sc.makeRDD(list)val flatRDD = rdd.flatMap(_.split(" "))val mapRDD = flatRDD.map(word=>{println("@@@@@@@@@@@@")(word,1)})val reduceRDD: RDD[(String, Int)] = mapRDD.reduceByKey(_+_)reduceRDD.collect().foreach(println)println("/****************")val groupRDD = mapRDD.groupByKey()groupRDD.collect().foreach(println)

输出:
@@@@@@@@@@@@
@@@@@@@@@@@@
@@@@@@@@@@@@
@@@@@@@@@@@@
(Spark,1)
(Hello,2)
(Scala,1)
/****************
@@@@@@@@@@@@
@@@@@@@@@@@@
@@@@@@@@@@@@
@@@@@@@@@@@@
(Spark,CompactBuffer(1))
(Hello,CompactBuffer(1, 1))
(Scala,CompactBuffer(1))

由输出可见,mapRDD从开始又执行了一次,所以效率很低,那能否有什么办法让rdd暂时保存数据呢?

  • 答案是使用持久化

在这里插入图片描述

1.RDD持久化原理

Spark中非常重要的一个功能特性就是可以将RDD持久化在内存中,当对RDD执行持久化操作时,每个节点都会将自己操作的RDD的partition持久化到内存中,并且在之后对该RDD的反复使用中,直接使用内存缓存的partition。这样的话,对于针对一个RDD反复执行多个操作的场景,就只要针对RDD计算一次即可,后面直接使用该RDD,而不用反复计算该RDD。

2.RDD持久化的使用场景

(1).第一次加载大量的数据到RDD中
(2).频繁的动态更新RDD Cache数据,不适合使用Spark Cache、Spark lineage

3.RDD持久化方法

1) RDD Cache 缓存 和 persist

RDD 通过 Cache 或者 Persist 方法将前面的计算结果缓存,默认情况下会把数据以缓存在 JVM 的堆内存中。但是并不是这两个方法被调用时立即缓存,而是触发后面的 action 算子时,该 RDD 将会被缓存在计算节点的内存中,并供后面重用。

val list = List("Hello Scala", "Hello Spark")val rdd = sc.makeRDD(list)val flatRDD = rdd.flatMap(_.split(" "))val mapRDD = flatRDD.map(word=>{println("@@@@@@@@@@@@")(word,1)})mapRDD.cache()// 持久化操作必须在行动算子执行时完成的。//mapRDD.persist(StorageLevel.DISK_ONLY)val reduceRDD: RDD[(String, Int)] = mapRDD.reduceByKey(_+_)reduceRDD.collect().foreach(println)println("/****************")val groupRDD = mapRDD.groupByKey()groupRDD.collect().foreach(println)

输出:
@@@@@@@@@@@@
@@@@@@@@@@@@
@@@@@@@@@@@@
@@@@@@@@@@@@
(Spark,1)
(Hello,2)
(Scala,1)
/****************
(Spark,CompactBuffer(1))
(Hello,CompactBuffer(1, 1))
(Scala,CompactBuffer(1))

使用persist方法 可以更改存储级别

mapRdd.persist(StorageLevel.MEMORY_AND_DISK_2)

在这里插入图片描述

  • cache()和persist()的区别在于,cahe()是persist()的一种简化方式,cache()的底层就是调用的persist()的无参版本,即persist(MEMORY_ONLY)

缓存有可能丢失,或者存储于内存的数据由于内存不足而被删除,RDD 的缓存容错机制保证了即使缓存丢失也能保证计算的正确执行。通过基于 RDD 的一系列转换,丢失的数据会被重算,由于 RDD 的各个 Partition 是相对独立的,因此只需要计算丢失的部分即可,并不需要重算全部Partition。
Spark 会自动对一些 Shuffle 操作的中间数据做持久化操作(比如:reduceByKey)。这样做的目的是为了当一个节点 Shuffle 失败了避免重新计算整个输入。但是,在实际使用的时候,如果想重用数据,仍然建议调用 persist 或 cache。

2).RDD CheckPoint 检查点

所谓的检查点其实就是通过将 RDD 中间结果写入磁盘

由于血缘依赖过长会造成容错成本过高,这样就不如在中间阶段做检查点容错,如果检查点之后有节点出现问题,可以从检查点开始重做血缘,减少了开销。

  • 对 RDD 进行 checkpoint 操作并不会马上被执行,必须执行 Action 操作才能触发。
  • Checkpoint 的数据通常存储在 HDFS 等容错、高可用的文件系统,可靠性高。
	sc.setCheckpointDir("cp")val list = List("Hello Scala", "Hello Spark")val rdd = sc.makeRDD(list)val flatRDD = rdd.flatMap(_.split(" "))val mapRDD = flatRDD.map(word=>{println("@@@@@@@@@@@@")(word,1)})// checkpoint 需要落盘,需要指定检查点保存路径// 检查点路径保存的文件,当作业执行完毕后,不会被删除// 一般保存路径都是在分布式存储系统:HDFSmapRDD.checkpoint()val reduceRDD: RDD[(String, Int)] = mapRDD.reduceByKey(_+_)reduceRDD.collect().foreach(println)println("/**************************************")val groupRDD = mapRDD.groupByKey()groupRDD.collect().foreach(println)

输出:
@@@@@@@@@@@@
@@@@@@@@@@@@
@@@@@@@@@@@@
@@@@@@@@@@@@
@@@@@@@@@@@@
@@@@@@@@@@@@
@@@@@@@@@@@@
@@@@@@@@@@@@
(Spark,1)
(Hello,2)
(Scala,1)
/**************************************
(Spark,CompactBuffer(1))
(Hello,CompactBuffer(1, 1))
(Scala,CompactBuffer(1))
在这里插入图片描述

3).缓存和检查点区别

cache :
1.将数据临时存储在内存中进行数据重用
2.会在血缘关系中添加新的依赖。一旦,出现问题,可以重头读取数据
persist :
1.将数据临时存储在磁盘文件中进行数据重用
2.涉及到磁盘IO,性能较低,但是数据安全
3.如果作业执行完毕,临时保存的数据文件就会丢失
checkpoint :
1.将数据长久地保存在磁盘文件中进行数据重用
2.涉及到磁盘IO,性能较低,但是数据安全
3.为了保证数据安全,所以一般情况下,会独立执行作业
4.为了能够提高效率,一般情况下,是需要和cache联合使用
5.执行过程中,会切断血缘关系。重新建立新的血缘关系,checkpoint等同于改变数据源

cache改变血缘关系:

val list = List("Hello Scala", "Hello Spark")val rdd = sc.makeRDD(list)val flatRDD = rdd.flatMap(_.split(" "))val mapRDD = flatRDD.map(word=>{(word,1)})mapRDD.cache()println(mapRDD.toDebugString)val reduceRDD: RDD[(String, Int)] = mapRDD.reduceByKey(_+_)reduceRDD.collect().foreach(println)println("/**************************************")println(mapRDD.toDebugString)

(1) MapPartitionsRDD[2] at map at RDD_Perist.scala:84 [Memory Deserialized 1x Replicated]
| MapPartitionsRDD[1] at flatMap at RDD_Perist.scala:83 [Memory Deserialized 1x Replicated]
| ParallelCollectionRDD[0] at makeRDD at RDD_Perist.scala:82 [Memory Deserialized 1x Replicated]
(Spark,1)
(Hello,2)
(Scala,1)
/**************************************
(1) MapPartitionsRDD[2] at map at RDD_Perist.scala:84 [Memory Deserialized 1x Replicated]
| CachedPartitions: 1; MemorySize: 368.0 B; ExternalBlockStoreSize: 0.0 B; DiskSize: 0.0 B
| MapPartitionsRDD[1] at flatMap at RDD_Perist.scala:83 [Memory Deserialized 1x Replicated]
| ParallelCollectionRDD[0] at makeRDD at RDD_Perist.scala:82 [Memory Deserialized 1x Replicated]

Checkpoint切断血缘关系:

sc.setCheckpointDir("cp")val list = List("Hello Scala", "Hello Spark")val rdd = sc.makeRDD(list)val flatRDD = rdd.flatMap(_.split(" "))val mapRDD = flatRDD.map(word=>{(word,1)})mapRDD.checkpoint()println(mapRDD.toDebugString)val reduceRDD: RDD[(String, Int)] = mapRDD.reduceByKey(_+_)reduceRDD.collect().foreach(println)println("/**************************************")println(mapRDD.toDebugString)

(1) MapPartitionsRDD[2] at map at RDD_Perist.scala:84 []
| MapPartitionsRDD[1] at flatMap at RDD_Perist.scala:83 []
| ParallelCollectionRDD[0] at makeRDD at RDD_Perist.scala:82 []
(Spark,1)
(Hello,2)
(Scala,1)
/**************************************
(1) MapPartitionsRDD[2] at map at RDD_Perist.scala:84 []
| ReliableCheckpointRDD[4] at collect at RDD_Perist.scala:91 []

建议对 checkpoint()的 RDD 使用 Cache 缓存,这样 checkpoint 的 job 只需从 Cache 缓存中读取数据即可,否则需要再从头计算一次 RDD。

//一起使用
mapRDD.cache()
mapRDD.checkpoint()

这篇关于Spark学习笔记(详解,附代码实列和图解)----------RDD(三)持久化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/592026

相关文章

Redis事务与数据持久化方式

《Redis事务与数据持久化方式》该文档主要介绍了Redis事务和持久化机制,事务通过将多个命令打包执行,而持久化则通过快照(RDB)和追加式文件(AOF)两种方式将内存数据保存到磁盘,以防止数据丢失... 目录一、Redis 事务1.1 事务本质1.2 数据库事务与redis事务1.2.1 数据库事务1.

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

SpringBoot操作spark处理hdfs文件的操作方法

《SpringBoot操作spark处理hdfs文件的操作方法》本文介绍了如何使用SpringBoot操作Spark处理HDFS文件,包括导入依赖、配置Spark信息、编写Controller和Ser... 目录SpringBoot操作spark处理hdfs文件1、导入依赖2、配置spark信息3、cont

Mysql 中的多表连接和连接类型详解

《Mysql中的多表连接和连接类型详解》这篇文章详细介绍了MySQL中的多表连接及其各种类型,包括内连接、左连接、右连接、全外连接、自连接和交叉连接,通过这些连接方式,可以将分散在不同表中的相关数据... 目录什么是多表连接?1. 内连接(INNER JOIN)2. 左连接(LEFT JOIN 或 LEFT

Java中ArrayList的8种浅拷贝方式示例代码

《Java中ArrayList的8种浅拷贝方式示例代码》:本文主要介绍Java中ArrayList的8种浅拷贝方式的相关资料,讲解了Java中ArrayList的浅拷贝概念,并详细分享了八种实现浅... 目录引言什么是浅拷贝?ArrayList 浅拷贝的重要性方法一:使用构造函数方法二:使用 addAll(

Java中switch-case结构的使用方法举例详解

《Java中switch-case结构的使用方法举例详解》:本文主要介绍Java中switch-case结构使用的相关资料,switch-case结构是Java中处理多个分支条件的一种有效方式,它... 目录前言一、switch-case结构的基本语法二、使用示例三、注意事项四、总结前言对于Java初学者

Linux内核之内核裁剪详解

《Linux内核之内核裁剪详解》Linux内核裁剪是通过移除不必要的功能和模块,调整配置参数来优化内核,以满足特定需求,裁剪的方法包括使用配置选项、模块化设计和优化配置参数,图形裁剪工具如makeme... 目录简介一、 裁剪的原因二、裁剪的方法三、图形裁剪工具四、操作说明五、make menuconfig

JAVA利用顺序表实现“杨辉三角”的思路及代码示例

《JAVA利用顺序表实现“杨辉三角”的思路及代码示例》杨辉三角形是中国古代数学的杰出研究成果之一,是我国北宋数学家贾宪于1050年首先发现并使用的,:本文主要介绍JAVA利用顺序表实现杨辉三角的思... 目录一:“杨辉三角”题目链接二:题解代码:三:题解思路:总结一:“杨辉三角”题目链接题目链接:点击这里

SpringBoot使用注解集成Redis缓存的示例代码

《SpringBoot使用注解集成Redis缓存的示例代码》:本文主要介绍在SpringBoot中使用注解集成Redis缓存的步骤,包括添加依赖、创建相关配置类、需要缓存数据的类(Tes... 目录一、创建 Caching 配置类二、创建需要缓存数据的类三、测试方法Spring Boot 熟悉后,集成一个外