行人重识别reid数据集

2024-01-10 10:58
文章标签 数据 行人 识别 reid

本文主要是介绍行人重识别reid数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

有需要的人,请在评论区留下你的邮箱。

本人,双非学校小硕。研究方向行人重识别。收集了一些常用数据集。

Market-1501-v15.09.15

在这里插入图片描述

dukemtmc-reid

在这里插入图片描述

顺便附上一个根据相机id划分数据集的代码

import os
import shutil
import os.path as osp
import numpy as np
import glob
import re
from collections import defaultdictfrom tqdm import tqdmdef _process_dir(dir_path, relabel=False):img_paths = glob.glob(osp.join(dir_path, '*.jpg'))  # 把此文件夹下的以jpg结尾的文件路径获取pattern = re.compile(r'([-\d]+)_c(\d)')# 将源pid构建一个映射,得到新的对应标签pid_container = set()  # 定义集合。重复数据会被删除,同时会排序for img_path in img_paths:pid, _ = map(int, pattern.search(img_path).groups())  # 只有两段都是数字。map映射if pid == -1: continue  # 有一些辣鸡数据pid_container.add(pid)pid2label = {pid: label for label, pid in enumerate(pid_container)}# 将数据打包成元组,进行储存dataset = []for img_path in img_paths:pid, camid = map(int, pattern.search(img_path).groups())if pid == -1: continue#assert 0 <= pid <= 1501assert 1 <= camid <= 8camid -= 1if relabel: pid = pid2label[pid]dataset.append((img_path, pid, camid))num_pids = len(pid_container)num_imgs = len(dataset)return dataset, num_pids, num_imgs  # dataset打包好的数据if __name__ == '__main__':img_dir = os.path.join('cam_0_ID')img_dir1 = os.path.join('cam_1_ID')img_dir2 = os.path.join('cam_2_ID')img_dir3 = os.path.join('cam_3_ID')img_dir4 = os.path.join('cam_4_ID')img_dir5 = os.path.join('cam_5_ID')img_dir6 = os.path.join('cam_6_ID')img_dir7 = os.path.join('cam_7_ID')img_names=os.listdir(img_dir) #所有文件名img_set,_,_=_process_dir(img_dir)camid_to_img=defaultdict(list)for i in img_set:# print(i)camid_to_img[i[2]].append(i[0])#print(camid_to_img[1])#print(len(camid_to_img.keys())) ==6for i in tqdm(range(len(camid_to_img.keys()))):os.mkdir(os.path.join('cam_{}_ID').format(i))target_file=os.path.join('cam_{}_ID').format(i)for j in range(len(camid_to_img[i])):img_name = '\\'.join(camid_to_img[i][j].split('\\')[1:]) #文件名#print(img_name)if img_name in img_names:target_path = os.path.join(target_file, img_name)src_path = os.path.join(img_dir,img_name)shutil.copy(src_path, target_path)

MSMT17(最初的版本)(建议做科研的话,使用最初的版本)

因为根据个人实验经历来看,这个版本的评估才是准确的。后面的更改的后的V1或者V2版本有误差。
在这里插入图片描述
dataset的代码:

from __future__ import print_function, absolute_import
import os.path as osp
import tarfileimport glob
import re
import urllib
import zipfilefrom ..utils.osutils import mkdir_if_missing
from ..utils.serialization import write_jsondef _pluck_msmt(list_file, subdir, pattern=re.compile(r'([-\d]+)_([-\d]+)_([-\d]+)')):with open(list_file, 'r') as f:lines = f.readlines()ret = []pids = []for line in lines:line = line.strip()fname = line.split(' ')[0]pid, _, cam = map(int, pattern.search(osp.basename(fname)).groups())if pid not in pids:pids.append(pid)ret.append((osp.join(subdir,fname), pid, cam))return ret, pidsclass Dataset_MSMT(object):def __init__(self, root):self.root = rootself.train, self.val, self.trainval = [], [], []self.query, self.gallery = [], []self.num_train_ids, self.num_val_ids, self.num_trainval_ids = 0, 0, 0@propertydef images_dir(self):return osp.join(self.root, 'MSMT17_V1')def load(self, verbose=True):exdir = osp.join(self.root, 'MSMT17_V1')self.train, train_pids = _pluck_msmt(osp.join(exdir, 'list_train.txt'), 'train')self.val, val_pids = _pluck_msmt(osp.join(exdir, 'list_val.txt'), 'train')self.train = self.train + self.valself.query, query_pids = _pluck_msmt(osp.join(exdir, 'list_query.txt'), 'test')self.gallery, gallery_pids = _pluck_msmt(osp.join(exdir, 'list_gallery.txt'), 'test')self.num_train_pids = len(list(set(train_pids).union(set(val_pids))))if verbose:print(self.__class__.__name__, "dataset loaded")print("  subset   | # ids | # images")print("  ---------------------------")print("  train    | {:5d} | {:8d}".format(self.num_train_pids, len(self.train)))print("  query    | {:5d} | {:8d}".format(len(query_pids), len(self.query)))print("  gallery  | {:5d} | {:8d}".format(len(gallery_pids), len(self.gallery)))class MSMT17(Dataset_MSMT):def __init__(self, root, split_id=0, download=True):super(MSMT17, self).__init__(root)if download:self.download()self.load()def download(self):import reimport hashlibimport shutilfrom glob import globfrom zipfile import ZipFileraw_dir = osp.join(self.root)mkdir_if_missing(raw_dir)# Download the raw zip filefpath = osp.join(raw_dir, 'MSMT17_V1')if osp.isdir(fpath):print("Using downloaded file: " + fpath)else:raise RuntimeError("Please download the dataset manually to {}".format(fpath))

MSMT17_V1(重命名图片版本)

之后有研究者为了与market1501统一起来,将图片格式改为与其一致。
在这里插入图片描述
需要的同学,记得点个赞。并留下你的邮箱。

这篇关于行人重识别reid数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/590543

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

pandas数据过滤

Pandas 数据过滤方法 Pandas 提供了多种方法来过滤数据,可以根据不同的条件进行筛选。以下是一些常见的 Pandas 数据过滤方法,结合实例进行讲解,希望能帮你快速理解。 1. 基于条件筛选行 可以使用布尔索引来根据条件过滤行。 import pandas as pd# 创建示例数据data = {'Name': ['Alice', 'Bob', 'Charlie', 'Dav