本文主要是介绍MapReduce源码分析——MapTask流程分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
前言
首先要说,MapTask,分为4种,分别是Job-setup Task,Job-cleanup Task,Task-cleanup和Map Task。
Job-setup Task、Job-cleanup Task分别是作业运行时启动的第一个任务和最后一个任务,主要工作分别是进行一些作业初始化和收尾工作,比如创建和删除作业临时输出目录;Task-cleanup Task则是任务失败或者被杀死后,用于清理已写入临时目录中数据的任务;最后一种Map Task则是处理数据并将结果存到本地磁盘上。
本文分析的重点,是最重要的MapTask。
源码分析
MapTask的整个过程分为5个阶段:
Read----->Map------>Collect------->Spill------>Combine
接下来我们直接分析源码
/*** mapTask主要执行流程*/@Overridepublic void run(final JobConf job, final TaskUmbilicalProtocol umbilical) throws IOException, ClassNotFoundException, InterruptedException {this.umbilical = umbilical;// start thread that will handle communication with parent//发送task任务报告,与父进程做交流TaskReporter reporter = new TaskReporter(getProgress(), umbilical,jvmContext);reporter.startCommunicationThread();//判断用的是新的MapReduceAPI还是旧的APIboolean useNewApi = job.getUseNewMapper();initialize(job, getJobID(), reporter, useNewApi);// check if it is a cleanupJobTask//map任务有4种,Job-setup Task, Job-cleanup Task, Task-cleanup Task和MapTaskif (jobCleanup) {//这里执行的是Job-cleanup TaskrunJobCleanupTask(umbilical, reporter);return;}if (jobSetup) {//这里执行的是Job-setup TaskrunJobSetupTask(umbilical, reporter);return;}if (taskCleanup) {//这里执行的是Task-cleanup TaskrunTaskCleanupTask(umbilical, reporter);return;}//如果前面3个任务都不是,执行的就是最主要的MapTask,根据新老API调用不同的方法if (useNewApi) {//我们关注一下新的的方法实现splitMetaInfo为Spilt分片的信息runNewMapper(job, splitMetaInfo, umbilical, reporter);} else {runOldMapper(job, splitMetaInfo, umbilical, reporter);}done(umbilical, reporter);}
下面我们来看中的runNewMapper(job, splitMetaInfo, umbilical, reporter)方法方法,这个方法将会构造一系列的对象来辅助执行Mapper。其代码如下:
private <INKEY,INVALUE,OUTKEY,OUTVALUE>void runNewMapper(final JobConf job,final TaskSplitIndex splitIndex,final TaskUmbilicalProtocol umbilical,TaskReporter reporter) throws IOException, ClassNotFoundException,InterruptedException {/*TaskAttemptContext类继承于JobContext类,相对于JobContext类增加了一些有关task的信息。* 通过taskContext对象可以获得很多与任务执行相关的类,比如用户定义的Mapper类,InputFormat类等等 */ // make a task context so we can get the classesorg.apache.hadoop.mapreduce.TaskAttemptContext taskContext =new org.apache.hadoop.mapreduce.TaskAttemptContext(job, getTaskID());// make a mapper//创建用户自定义的Mapper类的实例org.apache.hadoop.mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE> mapper =(org.apache.hadoop.mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE>)ReflectionUtils.newInstance(taskContext.getMapperClass(), job);// make the input format 创建用户指定的InputFormat类的实例 org.apache.hadoop.mapreduce.InputFormat<INKEY,INVALUE> inputFormat =(org.apache.hadoop.mapreduce.InputFormat<INKEY,INVALUE>)ReflectionUtils.newInstance(taskContext.getInputFormatClass(), job);// rebuild the input split 重新生成InputSplit org.apache.hadoop.mapreduce.InputSplit split = null;split = getSplitDetails(new Path(splitIndex.getSplitLocation()),splitIndex.getStartOffset());//根据InputFormat对象创建RecordReader对象,默认是LineRecordReader org.apache.hadoop.mapreduce.RecordReader<INKEY,INVALUE> input =new NewTrackingRecordReader<INKEY,INVALUE>(split, inputFormat, reporter, job, taskContext);job.setBoolean("mapred.skip.on", isSkipping());//生成RecordWriter对象org.apache.hadoop.mapreduce.RecordWriter output = null;org.apache.hadoop.mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE>.Context mapperContext = null;try {Constructor<org.apache.hadoop.mapreduce.Mapper.Context> contextConstructor =org.apache.hadoop.mapreduce.Mapper.Context.class.getConstructor(new Class[]{org.apache.hadoop.mapreduce.Mapper.class,Configuration.class,org.apache.hadoop.mapreduce.TaskAttemptID.class,org.apache.hadoop.mapreduce.RecordReader.class,org.apache.hadoop.mapreduce.RecordWriter.class,org.apache.hadoop.mapreduce.OutputCommitter.class,org.apache.hadoop.mapreduce.StatusReporter.class,org.apache.hadoop.mapreduce.InputSplit.class});// get an output objectif (job.getNumReduceTasks() == 0) {output =new NewDirectOutputCollector(taskContext, job, umbilical, reporter);} else {output = new NewOutputCollector(taskContext, job, umbilical, reporter);}mapperContext = contextConstructor.newInstance(mapper, job, getTaskID(),input, output, committer,reporter, split);/*初始化,在默认情况下调用的是LineRecordReader的initialize方 法,主要是打开输入文件并且将文件指针指向文件头*/ input.initialize(split, mapperContext);mapper.run(mapperContext); //Mapper的执行input.close();output.close(mapperContext);} catch (NoSuchMethodException e) {throw new IOException("Can't find Context constructor", e);} catch (InstantiationException e) {throw new IOException("Can't create Context", e);} catch (InvocationTargetException e) {throw new IOException("Can't invoke Context constructor", e);} catch (IllegalAccessException e) {throw new IOException("Can't invoke Context constructor", e);}}
(1)会获取配置信息类对象taskContext、自己开发的Mapper的实例mapper、用户指定的InputFormat对象inputFormat(默认是TextInputFormat)、任务对应的分片信息split
(2)根据inputFormat构建一个NewTrackingRecordReader对象,这个对象中的RecordReader<K,V> real是LineRecordReader。这个类是读取分片中的内容的。
(3)然后创建mapreduce.RecordWriter output,如果没有reducer(满足job.getNumReduceTasks() == 0),就output =new NewDirectOutputCollector(taskContext, job, umbilical, reporter)直接输出到HDFS上;如果有reducer,就output = new NewOutputCollector(taskContext, job, umbilical, reporter)作为输出,这俩都继承自org.apache.hadoop.mapreduce.RecordWriter类。output是map任务的输出。
(4)input.initialize(split, mapperContext)初始化,在默认情况下调用的是LineRecordReader的initialize方法,主要是打开输入文件(构建一个LineReader对象,在这实现文件内容的具体读)并且将文件指针指向文件头。
(5)mapper.run(mapperContext)这里是具体执行mapper的地方,下面再讲。
(6)最后mapper执行完毕之后,就会关闭输入输出流:input.close();output.close(mapperContext)。
上面这些就是MapTask的执行过程。还有一些地方需要再详细解读一下:
一、NewDirectOutputCollector直接将map的输出写入HDFS中
NewDirectOutputCollector是没有reducer的作业,直接将map的输出写入HDFS中。输出流mapreduce.RecordWriter out = outputFormat.getRecordWriter(taskContext),默认是TextOutputFormat.getRecordWriter(taskContext)这个方法会判断有无压缩配置项,然后通过Path file = getDefaultWorkFile(job, extension),extension这个参数如果没有压缩选项会为空,获取输出文件的写入目录和文件名,getRecordWriter方法最终会返回LineRecordWriter<K, V>(fileOut, keyValueSeparator),fileOut是FSDataOutputStream指向要写入的文件,keyValueSeparator是数据的分隔符,可通过"mapred.textoutputformat.separator"来配置,默认是"\t"表示输入数据要以\t分割。NewDirectOutputCollector.write(K key, V value)其实是调用out.write(key, value)来完成写入HDFS文件的。
二、NewOutputCollector是有reducer的作业的map的输出
这个类的主要包含的对象是MapOutputCollector<K,V> collector = new MapOutputBuffer<K,V>(umbilical, job, reporter),并且实例化了mapreduce.Partitioner<K,V> partitioner(默认是HashPartitioner.class)这个是用来对mapper的输出数据进行分区的就是要数据要汇总到那个reducer上,NewOutputCollector的write方法会调用collector.collect(key, value,partitioner.getPartition(key, value, partitions))。
三、LineRecordReader类
是用来从指定的文件读取内容传递给Mapper的map方法做处理的。实际上读文件内容的是类中的LineReader对象in,该对象在initialize方法,会根据输入文件的文件类型(压缩或不压缩)传入相应输入流对象。
LineReader输入流对象中通过readLine(Text str, int maxLineLength,int maxBytesToConsume)方法每次读取一行放入str中,并返回读取数据的长度。LineRecordReader.nextKeyValue()方法会设置两个对象key和value,key是一个偏移量指的是当前这行数据在输入文件中的偏移量(注意这个偏移量可不是对应单个分片内的偏移量,而是针对整个分布式文中的偏移量),value是通过LineReader的对象in读取的一行内容,如果没有数据可读了,这个方法会返回false,否则true。getCurrentKey()和getCurrentValue()是获取当前的key和value,调用这俩方法之前需要先调用nextKeyValue()为key和value赋新值,否则会重复,当然我们不用考虑这个因为在mapper.run方法中已经做了。
四、mapper.run()方法的执行
public void run(Context context) throws IOException, InterruptedException {setup(context);while (context.nextKeyValue()) {map(context.getCurrentKey(), context.getCurrentValue(), context);}cleanup(context);}
首先会执行setup方法,我们在开发自己的mapper时有时需要传一些自己的参数,可以写入context,自己重写setup方法,获取这个参数;然后循环调用nextKeyValue()方法获取key和value,执行map方法。
runNewMapper中的mapperContext,这是mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE>.Context对象,这个Context是Mapper的一个内部类。
mapperContext = contextConstructor.newInstance(mapper, job, getTaskID(),input, output, committer,reporter, split)
之前的上面的代码会实例化一个mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE>.Context对象,会将LineRecordReader的实例和NewOutputCollector的实例传进去,在MapContext类中LineRecordReader的实例会被赋给RecordReader<KEYIN,VALUEIN> reader。
之后通过WrappedMapper再对mapContext进行包装,生成一个mapperContext,这里map方法的context就是mapperContext。
然后会有同样的nextKeyValue()、getCurrentValue()、getCurrentKey()会调用reader的相应方法,从而实现了Mapper.run方法中的nextKeyValue()不断获取key和value。
当读完数据之后,会调用cleanup方法来做一些清理工作,这点我们同样可以利用,我们可以根据自己的需要重写cleanup方法。
另外我们自己的map方法中最后都会有context.write(K,V)方法用来将计算数据输出,我们顺着上一段继续追查MapContext类中并无write方法,但是它继承自TaskInputOutputContext类,进去发现RecordWriter<KEYOUT,VALUEOUT> output这个对象是输出对象,被赋值NewOutputCollector,其write方法直接调用的是NewOutputCollector.write方法,write方法会调用MapOutputBuffer.collect(key, value,partitioner.getPartition(key, value, partitions))方法,将数据先写入缓存中。
五.MapOutputBuffer 的概念
接下来我们看看MapOutputBuffer implements MapOutputCollector这个类了。该类内部使用一个缓冲区暂时存储用户输出数据,当缓冲区使用率达到一定阈值后,再讲缓冲区中的数据写到磁盘上。Hadoop的这个缓冲区采用环形缓冲区:当缓冲区使用率达到一定的阈值后,便开始向磁盘上写入数据,同时生产者扔可以向不断增加的剩余空间中循环写入数据,进而达到读写并行(Map Task的collect阶段和spill阶段),性能也比较高。
MapOutputBuffer采用两级索引结构,涉及三个环形缓冲区:int[] kvoffsets(偏移量索引数组,保存KV信息在位置索引kvindices中的偏移量)、int[] kvindices(位置索引数组,用于保存KV值在数据缓冲区kvbuffer中的起始位置)、byte[] kvbuffer(数据缓冲区,保存实际的KV值,默认情况下最多使用io.sort.mb的95%)。一对KV需占用数组kvoffsets的1个int大小,数组kvindices的3个int大小(分别保存所在partion号、key值开始位置、Value值开始位置),所以按比例1:3将大小为{io.sort.mb}的内存空间分配给数组kvoffsets和kvindices,默认是0.05*100MB。
MapOutputBuffer类中有一个BlockingBuffer extends DataOutputStream内部类,该类中的OutputStream out对象也是MapOutputBuffer的一个内部类Buffer extends OutputStream,Buffer主要是对kvbuffer操纵,BlockingBuffer的实例化对象是bb,该值同时是keySerializer和valSerializer(默认都是org.apache.hadoop.io.serializer.WritableSerialization的内部类WritableSerializer)的输出流对象。
MapOutputBuffer.collect方法每次都会先检查kvoffsets数组的有效容量是否超过io.sort.spill.percent,默认0.8,如果超过则唤醒spill线程写到临时文件中( startSpill()方法完成);然后通过keySerializer.serialize(key)将key写入上述说的bb输出流中,实际最终调用的是Buffer.write(byte b[], int off, int len),这个方法会将key写入环形缓冲区kvbuffer中,如果kvbuffer的有效内存容量超过io.sort.spill.percent则会唤醒spill线程写到临时文件中( startSpill()方法完成),如果发生key跨界情况(bufindex < keystart),要保证key不能跨界(因为是排序的关键字要求排序关键字连续存储),会调用bb.reset()来直接操纵kvbuffer处理两种情况(一种是头部可以放下key,另外一种则不可以);然后是keySerializer.serialize(key),写到kvbuffer中,可以参考序列化key时的过程,但value可以跨界。如果遇到一条记录的key或者value太大以至于整个缓冲区都放不下,则会抛出MapBufferTooSmallException,执行spillSingleRecord(key, value, partition)会将该记录单独输出到一个文件中。
可以看出触发spill溢写操作的条件是:kvoffsets或者kvbuffer有效容量超过io.sort.spill.percent;出现一条缓冲区kvbuffer无法容纳的超大记录。
SpillThread线程在构造方法中已经启动,线程的run方法就是一直等待被唤醒,一旦唤醒就调用sortAndSpill()方法排序并写文件,startSpill()会唤醒这个线程。
protected class SpillThread extends Thread {@Overridepublic void run() {spillLock.lock();spillThreadRunning = true;try {while (true) {spillDone.signal();while (!spillInProgress) {spillReady.await();}try {spillLock.unlock();sortAndSpill();} catch (Throwable t) {sortSpillException = t;} finally {spillLock.lock();if (bufend < bufstart) {bufvoid = kvbuffer.length;}kvstart = kvend;bufstart = bufend;spillInProgress = false;}}} catch (InterruptedException e) {Thread.currentThread().interrupt();} finally {spillLock.unlock();spillThreadRunning = false;}}}
先计算写入文件的大小;然后获取写到本地(非HDFS)文件的文件名,会有一个编号,例如output/spill2.out;然后构造一个输出流;然后使用快排对缓冲区kvbuffe中区间[bufstart,bufend)内的数据进行排序,先按分区编号partition进行排序,然后按照key进行排序。这样经过排序后,数据以分区为单位聚集在一起,且同一分区内所有数据按照key有序。
之后会构建一个IFile.Writer对象将输出流传进去,输出到指定的文件当中,这个对象支持行级的压缩。如果用户设置了Combiner,则写入文件之前会对每个分区中的数据进行一次聚集操作,通过combinerRunner.combine(kvIter, combineCollector)实现,combine方法会执行reducer.run方法,只不过输出和正常的reducer不一样而已,这里最终会调用IFile.Writer的append方法实现本地文件的写入。
最后调用mergeParts()方法合并所有spill文件。代码如下:
private void mergeParts() throws IOException, InterruptedException, ClassNotFoundException {// get the approximate size of the final output/index fileslong finalOutFileSize = 0;long finalIndexFileSize = 0;final Path[] filename = new Path[numSpills];final TaskAttemptID mapId = getTaskID();for(int i = 0; i < numSpills; i++) {filename[i] = mapOutputFile.getSpillFile(i); //通过spill文件的编号获取到指定的spill文件路径finalOutFileSize += rfs.getFileStatus(filename[i]).getLen();}//合并输出有俩文件一个是output/file.out,一个是output/file.out.indexif (numSpills == 1) { //the spill is the final outputrfs.rename(filename[0],new Path(filename[0].getParent(), "file.out"));if (indexCacheList.size() == 0) {rfs.rename(mapOutputFile.getSpillIndexFile(0),new Path(filename[0].getParent(),"file.out.index"));} else { //写入文件indexCacheList.get(0).writeToFile(new Path(filename[0].getParent(),"file.out.index"), job);}return;}// read in paged indicesfor (int i = indexCacheList.size(); i < numSpills; ++i) {Path indexFileName = mapOutputFile.getSpillIndexFile(i);indexCacheList.add(new SpillRecord(indexFileName, job, null));}//make correction in the length to include the sequence file header//lengths for each partitionfinalOutFileSize += partitions * APPROX_HEADER_LENGTH;finalIndexFileSize = partitions * MAP_OUTPUT_INDEX_RECORD_LENGTH;Path finalOutputFile =mapOutputFile.getOutputFileForWrite(finalOutFileSize); //output/file.outPath finalIndexFile =mapOutputFile.getOutputIndexFileForWrite(finalIndexFileSize); //output/file.out.index//The output stream for the final single output fileFSDataOutputStream finalOut = rfs.create(finalOutputFile, true, 4096);if (numSpills == 0) {//create dummy(假的,假设) filesIndexRecord rec = new IndexRecord();SpillRecord sr = new SpillRecord(partitions);try {for (int i = 0; i < partitions; i++) {long segmentStart = finalOut.getPos();Writer<K, V> writer =new Writer<K, V>(job, finalOut, keyClass, valClass, codec, null);writer.close();rec.startOffset = segmentStart;rec.rawLength = writer.getRawLength();rec.partLength = writer.getCompressedLength();sr.putIndex(rec, i);}sr.writeToFile(finalIndexFile, job);} finally {finalOut.close();}return;}{IndexRecord rec = new IndexRecord();final SpillRecord spillRec = new SpillRecord(partitions);//finalOut最终输出文件。循环分区获得所有spill文件的该分区数据,合并写入finalOutfor (int parts = 0; parts < partitions; parts++) {//create the segments to be mergedList<Segment<K,V>> segmentList =new ArrayList<Segment<K, V>>(numSpills);for(int i = 0; i < numSpills; i++) {IndexRecord indexRecord = indexCacheList.get(i).getIndex(parts);Segment<K,V> s =new Segment<K,V>(job, rfs, filename[i], indexRecord.startOffset,indexRecord.partLength, codec, true);segmentList.add(i, s);if (LOG.isDebugEnabled()) {LOG.debug("MapId=" + mapId + " Reducer=" + parts +"Spill =" + i + "(" + indexRecord.startOffset + "," +indexRecord.rawLength + ", " + indexRecord.partLength + ")");}}//merge@SuppressWarnings("unchecked")RawKeyValueIterator kvIter = Merger.merge(job, rfs,keyClass, valClass, codec,segmentList, job.getInt("io.sort.factor", 100),//做merge操作时同时操作的stream数上限new Path(mapId.toString()),job.getOutputKeyComparator(), reporter,null, spilledRecordsCounter);//write merged output to disklong segmentStart = finalOut.getPos();Writer<K, V> writer =new Writer<K, V>(job, finalOut, keyClass, valClass, codec,spilledRecordsCounter);// minSpillsForCombine 在MapOutputBuffer构造函数内被初始化, // numSpills 为mapTask已经溢写到磁盘spill文件数量 if (combinerRunner == null || numSpills < minSpillsForCombine) {Merger.writeFile(kvIter, writer, reporter, job);} else {combineCollector.setWriter(writer);//其实写入数据的还是这里的writer类的append方法,这的输出是output/file.out文件,是合并后的文件combinerRunner.combine(kvIter, combineCollector);}//closewriter.close();// record offsetsrec.startOffset = segmentStart;rec.rawLength = writer.getRawLength();rec.partLength = writer.getCompressedLength();spillRec.putIndex(rec, parts);}spillRec.writeToFile(finalIndexFile, job); //写入索引文件finalOut.close(); //合并后的输出文件for(int i = 0; i < numSpills; i++) {rfs.delete(filename[i],true);}}}
该方法会将所有临时文件合并成一个大文件保存到output/file.out中,同时生成相应的索引文件output/file.out.index。 在进行文件合并的过程中,Map Task以分区为单位进行合并。
另外需要注意的是,mergeParts()中也有combiner的操作,但是需要满足一定的条件:
1、用户设置了combiner;
2、spill文件的数量超过了minSpillsForCombine的值,对应配置项"min.num.spills.for.combine",可自行设置,默认是3。
这俩必须同时具备才会在此启动combiner的本地聚集操作。所以在Map阶段有可能combiner会执行两次,所以有可能你的combiner执行两次之后输出数据不符合预期了。
总结
Map阶段的任务主要是读取数据然后写入内存缓冲区,缓存区满足条件就会快排后并设置partition后,spill到本地文件和索引文件;
如果有combiner,spill之前也会做一次聚集操作,待数据跑完会通过归并合并所有spill文件和索引文件。
如果有combiner,合并之前在满足条件后会做一次综合的聚集操作。map阶段的结果都会存储在本地中(如果有reducer的话),非HDFS。
注意
1.Combiner
Combiner是一个本地化的reduce操作,它是map运算的后续操作,主要是在map计算出中间文件前做一个简单的合并重复key值的操作,这样文件会变小,这样就提高了宽带的传输效率,毕竟hadoop计算力宽带资源往往是计算的瓶颈也是最为宝贵的资源,但是combiner操作是有风险的,使用它的原则是combiner的输入不会影响到reduce计算的最终输入,例如:如果计算只是求总数,最大值,最小值可以使用combiner,但是做平均值计算使用combiner的话,最终的reduce计算结果就会出错。
2.默认分片大小与分块大小是相同的原因
hadoop在存储有输入数据(HDFS中的数据)的节点上运行map任务,可以获得高性能,这就是所谓的数据本地化。所以最佳分片的大小应该与HDFS上的块大小一样,因为如果分片跨越2个数据块,对于任何一个HDFS节点,分片中的另外一块数据就需要通过网络传输到map任务节点,与使用本地数据运行map任务相比,效率则更低!
3.map阶段的溢写疑问?
溢写阶段,分两类:
- 环形缓冲区的数据到达80%时,就会溢写到本地磁盘,当再次达到80%时,就会再次溢写到磁盘,直到最后一次,不管环形缓冲区还有多少数据,都会溢写到磁盘。然后会对这多次溢写到磁盘的多个小文件进行合并,减少Reduce阶段的网络传输。
- 就是没有达到80%map阶段就结束了,这时直接把环形缓冲区的数据写到磁盘上,供下一步合并使用。
参考资料
MapReduce的MapTask任务的运行源码级分析
)
这篇关于MapReduce源码分析——MapTask流程分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!