数据结构——迪杰斯特拉算法求最短路径

2024-01-10 06:40

本文主要是介绍数据结构——迪杰斯特拉算法求最短路径,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题描述

将图以邻接矩阵或邻接表存储,实现Dijkstra算法。

算法设计

迪杰斯特拉算法:

1.假设用带权的邻接矩阵arc,来表示带权有向图,arc[i][j],表示弧<vi,vj>上的权值。若<vi,vj>不存在,则置arc[i][j]为无穷。
S为已找到从v出发的最短路径的终点的集合,它的初始状态为空集。那么,从v出发到图上其余各顶点可能达到的最短路径长度的初值为:
D[j]=arcs[LocateVex(G,v)][i] vi∈V

2.选择vj,使得 D[j]=Min{D[i]|vi∈V-S}
vj就是当前求得的一条从v出发的最短路径的终点。令S=S∪{j}

3.修改从v出发到集合V-S上任一顶点vk可达的最短路径长度。如果
D[j]+arcs[j][k]<D[k] 则修改D[k]为D[k]=D[j]+arcs[j][k]

4.重复操作2,3共n-1次。
由此求得从v到图上其余各顶点的最短路径是依路径长度递增的序列。

算法实现

代码

#include "stdio.h"
#include "stdlib.h"
#define INFINITY INT_MAX
#define MAX_VERTEX_NUM 20
#define InfoType char   //存储弧或者边额外信息的指针变量类型
#define VertexType char  //图中顶点的数据类型
int P[MAX_VERTEX_NUM]; //用于存储最短路径下标的数组
int D[MAX_VERTEX_NUM];  //用于存储到各点最短路径的权值typedef struct ArcCell{int adj;  //权值InfoType *info;
}ArcCell,AdjMatrix[MAX_VERTEX_NUM][MAX_VERTEX_NUM];typedef struct{VertexType vexs[MAX_VERTEX_NUM];  //顶点的向量AdjMatrix arcs;int vexnum;  //顶点数int arcnum;  //弧数
}MGraph;int LocateVex(MGraph *G,VertexType v){int i;for(i=0;i<G->arcnum;i++){if(G->vexs[i]==v)return i;}if(i>=G->arcnum)return -1;elsereturn -1;
}void CreateGraph(MGraph *G){printf("输入顶点数和弧数:\n");scanf("%d%d",&G->vexnum,&G->arcnum);printf("输入顶点的元素:\n");for(int i=0;i<G->vexnum;i++){getchar();scanf("%c",&G->vexs[i]);}for(int i=0;i<G->vexnum;i++)for(int j=0;j<G->vexnum;j++){G->arcs[i][j].adj=INFINITY;G->arcs[i][j].info=NULL;}printf("输入各个弧及权值:\n");for(int i=0;i<G->arcnum;i++){char a1,a2,a3;int w,n1,n2;getchar();scanf("%c%c%c%d",&a1,&a2,&a3,&w);n1=LocateVex(G,a1);n2=LocateVex(G,a3);if(n1==-1 || n2==-1){printf("no this vertex.\n");return;}G->arcs[n1][n2].adj=w;}
}//输出邻接矩阵
void PrintGraph(MGraph G){printf("邻接矩阵:\n");for(int i=0;i<G.vexnum;i++){for(int j=0;j<G.vexnum;j++){printf("%d ",G.arcs[i][j].adj);}printf("\n");}
}void Dijkstra(MGraph G,int v0){int v,w,k,min;int final[MAX_VERTEX_NUM];for(v=0;v<G.vexnum;v++){final[v]=0;D[v]=G.arcs[v0][v].adj;P[v]=0;}D[v0]=0;final[v0]=1;for(v=1;v<G.vexnum;v++){min=INFINITY;for(w=0;w<G.vexnum;w++){if(!final[w]&&D[w]<min){k=w;min=D[w];}}final[k]=1;for(w=0;w<G.vexnum;w++){if(!final[w] && (min+G.arcs[k][w].adj<D[w])&&G.arcs[k][w].adj!=INFINITY){D[w]=min+G.arcs[k][w].adj;P[w]=k;}}}
}void Print(MGraph G,int v){printf("\n");for(int i=0;i<G.vexnum;i++){if(i!=v && D[i]!=INT_MAX){printf("%c到%c的最短距离为:%d\n",G.vexs[v],G.vexs[i],D[i]);}else if(D[i]==INT_MAX){printf("%c与%c之间无路径!\n",G.vexs[v],G.vexs[i]); } }
}int main(){MGraph G;CreateGraph(&G);PrintGraph(G);Dijkstra(G,0);Print(G,0);system("pause");return 0;}

结果
在这里插入图片描述

这篇关于数据结构——迪杰斯特拉算法求最短路径的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/589892

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

hdu2544(单源最短路径)

模板题: //题意:求1到n的最短路径,模板题#include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#i

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

poj 1734 (floyd求最小环并打印路径)

题意: 求图中的一个最小环,并打印路径。 解析: ans 保存最小环长度。 一直wa,最后终于找到原因,inf开太大爆掉了。。。 虽然0x3f3f3f3f用memset好用,但是还是有局限性。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#incl

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)