kafka: 基础概念回顾(生产者客户端和机架感知相关内容)

本文主要是介绍kafka: 基础概念回顾(生产者客户端和机架感知相关内容),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、kafka生产者客户端

1、整体架构:数据发送流程

在这里插入图片描述
(1)生产者

  • 拦截器
    生产者的拦截器可以在消息发送前做一些拦截工作对数据进行相应的处理,比如:消息过滤、消息内容修改等。
package org.apache.kafka.clients.producer;
import org.apache.kafka.common.Configurable;
public interface ProducerInterceptor<K, V> extends Configurable {//在将消息序列化和计算分区之前会调⽤该⽅法,⽤来对消息进⾏相应的定制化操作,如修改消息内容public ProducerRecord<K, V> onSend(ProducerRecord<K, V> record);//在消息被应答之前或者消息发送失败时调⽤该⽅法,优先于⽤⼾设定的Callback之前执⾏,如统计消息发送成功或失败的次数public void onAcknowledgement(RecordMetadata metadata, Exception exception);public void close();
}
  • 序列化器
  • 分区器

二、kafka数据可靠性保证

1、LEO和HW
2、工作流程
3、Leader Epoch

三、粘性分区策略

四、机架感知

1、概念
2、机架感知分区分配策略
3、验证

(1)验证目标

  • 机架感知特性将同⼀分区的副本分散到不同的机架上
  • rack机制消费者可以消费到follower副本中的数据

(2)参数配置
broker端配置:

  • 配置名:broker.rack=my-rack-id
    • 解释:broker属于的rack
  • 配置名:replica.selector.class
    • 解释:ReplicaSelector实现类的全名,包括路径 (⽐如 RackAwareReplicaSelector 即按 rack id 指定消费)

Client端配置:
client.rack

  • consumer端配置
  • 配置名:client.rack
  • 解释:这个参数需要和broker端指定的 broker.rack 相同,表⽰去哪个rack中获取数据。
  • 默认:null

(3)环境准备:kafka集群

  • kafka实例数: 4
  • 两个kafka实例broker.rack配置为0,另外两个kafka实例broker.rack配置为了2,broker端配置如下:
server1:
broker.id=0broker.rack=0
replica.selector.class=org.apache.kafka.common.replica.RackAwareReplicaSelectorserver2:
broker.id=1
broker.rack=0
replica.selector.class=org.apache.kafka.common.replica.RackAwareReplicaSelectorserver3
broker.id=2
broker.rack=2
replica.selector.class=org.apache.kafka.common.replica.RackAwareReplicaSelectorserver4
broker.id=3
broker.rack=2
replica.selector.class=org.apache.kafka.common.replica.RackAwareReplicaSelector

启动kafka集群,服务端⽇志信息:
在这里插入图片描述
在这里插入图片描述
验证一:机架感知特性将同一分区的副本分散到不同的机架上
在这里插入图片描述
创建topic rack02,副本被分配到了broker1和2
在这里插入图片描述
创建topic rack03 副本被分配到了0和3
在这里插入图片描述
在这里插入图片描述

验证二:客⼾端(消费者)验证:rack机制消费者可以消费到follower副本中的数据

验证代码如下:

package person.xsc.train.producer;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.TopicPartition;
import org.apache.kafka.common.serialization.StringDeserializer;
import person.xsc.train.client.KafkaConsumerClient;
import person.xsc.train.constant.KafkaConstant;
import java.time.Duration;
import java.util.Arrays;
import java.util.Properties;
public class Demo {public static KafkaConsumer<String, String> kafkaConsumer;public static void main(String[] args) {Properties properties = new Properties();properties.put(KafkaConstant.BOOTSTRAP_SERVERS, "localhost:9093,localhosproperties.put(KafkaConstant.GROUP_ID, "test01");properties.put(KafkaConstant.ENABLE_AUTO_COMMIT, "true");properties.put(KafkaConstant.AUTO_COMMIT_INTERVAL_MS, "1000");properties.put(KafkaConstant.KEY_DESERIALIZER, StringDeserializer.class.properties.put(KafkaConstant.VALUE_DESERIALIZER, StringDeserializer.clasproperties.put(ConsumerConfig.MAX_POLL_RECORDS_CONFIG, "10");properties.put(ConsumerConfig.CLIENT_RACK_CONFIG, "0");properties.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");kafkaConsumer = KafkaConsumerClient.createKafkaClient(properties);receiveMessage("rack02");}public static void receiveMessage(String topic) {TopicPartition topicPartition0 = new TopicPartition(topic, 0);kafkaConsumer.assign(Arrays.asList(topicPartition0));while(true) {// Kafka的消费者⼀次拉取⼀批的数据ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll//System.out.println("开始打印消息!");// 5.将将记录(record)的offset、key、value都打印出来for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {// 主题String topicName = consumerRecord.topic();int partition = consumerRecord.partition();// offset:这条消息处于Kafka分区中的哪个位置long offset = consumerRecord.offset();// key\valueString key = consumerRecord.key();String value = consumerRecord.value();System.out.println(String.format("topic: %s, partition: %s, offs}}}
}

前置背景:
Topic rack02的partition 0分区的副本为broker2(对应的rack为2)和broker1(对应的rack为0),其中broker2为leader(在⾮rack机制下仅能消费到leader中的数据)。

在上述代码中,消费者配置中限制了rack为0,消费的分区为0,因此映射到broker1。通过测试可验证在rack机制下消费者可以消费到folloer副本中的数据,测试如下:
在这里插入图片描述

五、机架感知存在的问题

这篇关于kafka: 基础概念回顾(生产者客户端和机架感知相关内容)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/589875

相关文章

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

Kafka拦截器的神奇操作方法

《Kafka拦截器的神奇操作方法》Kafka拦截器是一种强大的机制,用于在消息发送和接收过程中插入自定义逻辑,它们可以用于消息定制、日志记录、监控、业务逻辑集成、性能统计和异常处理等,本文介绍Kafk... 目录前言拦截器的基本概念Kafka 拦截器的定义和基本原理:拦截器是 Kafka 消息传递的不可或缺

关于Maven生命周期相关命令演示

《关于Maven生命周期相关命令演示》Maven的生命周期分为Clean、Default和Site三个主要阶段,每个阶段包含多个关键步骤,如清理、编译、测试、打包等,通过执行相应的Maven命令,可以... 目录1. Maven 生命周期概述1.1 Clean Lifecycle1.2 Default Li

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

Python手搓邮件发送客户端

《Python手搓邮件发送客户端》这篇文章主要为大家详细介绍了如何使用Python手搓邮件发送客户端,支持发送邮件,附件,定时发送以及个性化邮件正文,感兴趣的可以了解下... 目录1. 简介2.主要功能2.1.邮件发送功能2.2.个性签名功能2.3.定时发送功能2. 4.附件管理2.5.配置加载功能2.6.

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

如何在一台服务器上使用docker运行kafka集群

《如何在一台服务器上使用docker运行kafka集群》文章详细介绍了如何在一台服务器上使用Docker运行Kafka集群,包括拉取镜像、创建网络、启动Kafka容器、检查运行状态、编写启动和关闭脚本... 目录1.拉取镜像2.创建集群之间通信的网络3.将zookeeper加入到网络中4.启动kafka集群

Redis的Hash类型及相关命令小结

《Redis的Hash类型及相关命令小结》edisHash是一种数据结构,用于存储字段和值的映射关系,本文就来介绍一下Redis的Hash类型及相关命令小结,具有一定的参考价值,感兴趣的可以了解一下... 目录HSETHGETHEXISTSHDELHKEYSHVALSHGETALLHMGETHLENHSET