gradient_checkpointing

2024-01-10 05:28
文章标签 gradient checkpointing

本文主要是介绍gradient_checkpointing,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点评:本质是减少内存消耗的一种方式,以时间或者计算换内存

gradient_checkpointing(梯度检查点)是一种用于减少深度学习模型中内存消耗的技术。在训练深度神经网络时,反向传播算法需要在前向传播和反向传播之间存储中间计算结果,以便计算梯度并更新模型参数。这些中间结果的存储会占用大量的内存,特别是当模型非常深或参数量很大时。

梯度检查点技术通过在前向传播期间临时丢弃一些中间结果,仅保留必要的信息,以减少内存使用量。在反向传播过程中,只需要重新计算被丢弃的中间结果,而不需要存储所有的中间结果,从而节省内存空间。

实现梯度检查点的一种常见方法是将某些层或操作标记为检查点。在前向传播期间,被标记为检查点的层将计算并缓存中间结果。然后,在反向传播过程中,这些层将重新计算其所需的中间结果,以便计算梯度。

以下是一种简单的实现梯度检查点的伪代码:

```
for input, target in training_data:
    # Forward pass
    x1 = layer1.forward(input)
    x2 = layer2.forward(x1)
    x3 = checkpoint(layer3, x2)  # Apply checkpointing on layer3
    x4 = layer4.forward(x3)
    output = layer5.forward(x4)
    
    # Compute loss and gradient
    loss = compute_loss(output, target)
    gradient = compute_gradient(loss)
    
    # Backward pass
    grad_x4 = layer5.backward(gradient)
    grad_x3 = layer4.backward(grad_x4)
    grad_x2 = checkpoint(layer3, x2, backward=True)  # Apply checkpointing on layer3 during backward pass
    grad_x1 = layer2.backward(grad_x2)
    grad_input = layer1.backward(grad_x1)
    
    # Update model parameters
    update_parameters(layer1)
    update_parameters(layer2)
    update_parameters(layer3)
    update_parameters(layer4)
    update_parameters(layer5)
```

在上述伪代码中,`checkpoint`函数用于标记需要进行梯度检查点的层。在前向传播期间,它计算并缓存中间结果;在反向传播期间,它重新计算中间结果,并传递梯度。这样,只有在需要时才会存储中间结果,从而减少内存消耗。

需要注意的是,梯度检查点技术在减少内存消耗的同时,会导致额外的计算开销。因为某些中间结果需要重新计算,所以整体的训练时间可能会稍微增加。因此,在决定使用梯度检查点时,需要权衡内存消耗和计算开销之间的折衷。

这篇关于gradient_checkpointing的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/589699

相关文章

css渐变色背景|<gradient示例详解

《css渐变色背景|<gradient示例详解》CSS渐变是一种从一种颜色平滑过渡到另一种颜色的效果,可以作为元素的背景,它包括线性渐变、径向渐变和锥形渐变,本文介绍css渐变色背景|<gradien... 使用渐变色作为背景可以直接将渐China编程变色用作元素的背景,可以看做是一种特殊的背景图片。(是作为背

Nn criterions don’t compute the gradient w.r.t. targets error「pytorch」 (debug笔记)

Nn criterions don’t compute the gradient w.r.t. targets error「pytorch」 ##一、 缘由及解决方法 把这个pytorch-ddpg|github搬到jupyter notebook上运行时,出现错误Nn criterions don’t compute the gradient w.r.t. targets error。注:我用

【CSS渐变】背景中的百分比:深入理解`linear-gradient`,进度条填充

在现代网页设计中,CSS渐变是一种非常流行的视觉效果,它为网页背景或元素添加了深度和动态感。linear-gradient函数是实现线性渐变的关键工具,它允许我们创建从一种颜色平滑过渡到另一种颜色的视觉效果。在本篇博客中,我们将深入探讨linear-gradient函数中的百分比值,特别是像#C3002F 50%, #e8e8e8 0这样的用法,以及它们如何影响渐变效果。 什么是linear-g

AI学习指南深度学习篇-随机梯度下降法(Stochastic Gradient Descent,SGD)简介

AI学习指南深度学习篇-随机梯度下降法(Stochastic Gradient Descent,SGD)简介 在深度学习领域,优化算法是至关重要的一部分。其中,随机梯度下降法(Stochastic Gradient Descent,SGD)是最为常用且有效的优化算法之一。本篇将介绍SGD的背景和在深度学习中的重要性,解释SGD相对于传统梯度下降法的优势和适用场景,并提供详细的示例说明。 1.

[数字信号处理][Python] numpy.gradient()函数的算法实现

先看实例 import numpy as npsignal = [3,2,1,3,8,10]grad = np.gradient(signal)print(grad) 输出结果是 [-1. -1. 0.5 3.5 3.5 2. ] 这个结果是怎么来的呢? np.gradient 计算信号的数值梯度,也就是信号值的变化率。它使用中心差分法来计算中间点的梯度,并使用前向差分法和后向差分法

机器学习-有监督学习-集成学习方法(六):Bootstrap->Boosting(提升)方法->LightGBM(Light Gradient Boosting Machine)

机器学习-有监督学习-集成学习方法(六):Bootstrap->Boosting(提升)方法->LightGBM(Light Gradient Boosting Machine) LightGBM 中文文档 https://lightgbm.apachecn.org/ https://zhuanlan.zhihu.com/p/366952043

基于Python的机器学习系列(18):梯度提升分类(Gradient Boosting Classification)

简介         梯度提升(Gradient Boosting)是一种集成学习方法,通过逐步添加新的预测器来改进模型。在回归问题中,我们使用梯度来最小化残差。在分类问题中,我们可以利用梯度提升来进行二分类或多分类任务。与回归不同,分类问题需要使用如softmax这样的概率模型来处理类别标签。 梯度提升分类的工作原理         梯度提升分类的基本步骤与回归类似,但在分类任务中,我们使

linear-gradient 渐变

CSS3 Gradient 分为  linear-gradient(线性渐变)和  radial-gradient(径向渐变)。而我们今天主要是针对线性渐变来剖析其具体的用法。为了更好的应用 CSS3 Gradient,我们需要先了解一下目前的几种现代浏览器的内核,主要有 Mozilla(Firefox,Flock等)、WebKit(Safari、Chrome等)、Opera(Opera浏览器

神经网络算法 - 一文搞懂Gradient Descent(梯度下降)

本文将从梯度下降的本质、梯度下降的原理、梯度下降的算法 三个方面,带您一文搞懂梯度下降 Gradient Descent | GD。 梯度下降 机器学习“三板斧”:选择模型家族,定义损失函数量化预测误差,通过优化算法找到最小化损失的最优模型参数。 机器学习 vs 人类学习 定义一个函数集合(模型选择) 目标:确定一个合适的假设空间或模型家族。 示例:线性回归、逻辑回归、神

理解SparkStreaming的Checkpointing

streaming 应用程序必须 24 * 7 运行, 因此必须对应用逻辑无关的故障(例如, 系统故障, JVM 崩溃等)具有弹性. 为了可以这样做, Spark Streaming 需要 checkpoint 足够的信息到容错存储系统, 以便可以从故障中恢复.checkpoint 有两种类型的数据.   Metadata checkpointing - 将定义 streaming 计算的信息