异常检测—IsolationForest算法简介以及Python实现

2024-01-10 00:48

本文主要是介绍异常检测—IsolationForest算法简介以及Python实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

IsolationForest是一种适合高维数据集的异常值检测算法。

核心思想

通过随机切分数据集,异常点应该是容易被隔离的。

算法简介

  1. 随机选择一个特征,再在该特征下最大与最小值间随机选择一个值作为切分点,递归切分数据集,直到每个样本点被隔开,从而构建一颗类似CART分类树的随机树。重复构建多颗随机树。
  2. 从根节点到叶节点的路径越长,代表该点越难被隔离,即该点越不可能是异常点。计算每个样本点路径长的平均值,即得到该点得分,得分越低越可能是异常点。原论文中,提出了以下方法对异常分值进行归一化:
    论文图片
    式中 c ( ψ ) c(\psi) c(ψ)值样本的个数。s值越大越可能是异常值

代码示例

# 实现IsolationForest高维数据的异常值检测算法
import numpy as np
import math
from collections import Counterclass Node:def __init__(self, val=None, right=None, left=None):self.val = val  # 存储样本索引,仅叶节点self.right = rightself.left = leftclass RandomTree:def __init__(self):self.tree = Noneself.n_feas = Nonedef get_split(self, data, inds):# 随机构建切分点f = np.random.choice(self.n_feas)  # 随机选择一个特征up = max(data[inds, f])down = min(data[inds, f])v = (up - down) * np.random.sample() + down  # 在该特征的最大与最小值间随机选择一个数return f, vdef split(self, data, inds):# 切分数据集f, v = self.get_split(data, inds)left_ind = []right_ind = []for i in inds:if data[i, f] <= v:left_ind.append(i)else:right_ind.append(i)return left_ind, right_inddef buildTree(self, data, inds):if len(inds) < 3:  # 叶节点return Node(val=inds)left_ind, right_ind = self.split(data, inds)left = self.buildTree(data, left_ind)right = self.buildTree(data, right_ind)return Node(left=left, right=right)def fit(self, data):self.n_feas = data.shape[1]inds = np.arange(data.shape[0])self.tree = self.buildTree(data, inds)returndef traverse(self):# 遍历树,统计每个样本的路径长path_len = Counter()i = -1def helper(currentNode):nonlocal ii += 1if currentNode.val is not None:for ind in currentNode.val:path_len[ind] = ireturnfor child in [currentNode.left, currentNode.right]:helper(child)i -= 1returnhelper(self.tree)return path_lenclass IsolationForest:def __init__(self, n_tree, epsilon):self.n_tree = n_treeself.epsilon = epsilon  # 异常点比例self.scores = Counter()def fit_predict(self, data):for _ in range(self.n_tree):RT = RandomTree()RT.fit(data)path_len = RT.traverse()self.scores = self.scores + path_lenn_sample = data.shape[0]phi = 2 * math.log(n_sample - 1) - 2 * (n_sample - 1) / n_samplefor key, val in self.scores.items():self.scores[key] = 2 ** -(val / self.n_tree / phi)  # 归一化q = np.quantile(list(self.scores.values()), 1 - self.epsilon)outliers = [key for key, val in self.scores.items() if val > q]return outliersif __name__ == '__main__':np.random.seed(42)X_inliers = 0.3 * np.random.randn(100, 2)X_inliers = np.r_[X_inliers + 2, X_inliers - 2]X_outliers = np.random.uniform(low=-4, high=4, size=(20, 2))data = np.r_[X_inliers, X_outliers]IF = IsolationForest(100, 0.1)out_ind = IF.fit_predict(data)outliers = data[out_ind]import matplotlib.pyplot as pltplt.scatter(data[:, 0], data[:, 1], color='b')plt.scatter(outliers[:, 0], outliers[:, 1], color='r')plt.show()

参考资料

作者原论文
https://blog.csdn.net/u013709270/article/details/73436588

注:代码未经严格测试,仅作示例,如有不当之处,请指正。

这篇关于异常检测—IsolationForest算法简介以及Python实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/588991

相关文章

使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)

《使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)》在现代软件开发中,处理JSON数据是一项非常常见的任务,无论是从API接口获取数据,还是将数据存储为JSON格式,解析... 目录1. 背景介绍1.1 jsON简介1.2 实际案例2. 准备工作2.1 环境搭建2.1.1 添加

Java实现任务管理器性能网络监控数据的方法详解

《Java实现任务管理器性能网络监控数据的方法详解》在现代操作系统中,任务管理器是一个非常重要的工具,用于监控和管理计算机的运行状态,包括CPU使用率、内存占用等,对于开发者和系统管理员来说,了解这些... 目录引言一、背景知识二、准备工作1. Maven依赖2. Gradle依赖三、代码实现四、代码详解五

java如何分布式锁实现和选型

《java如何分布式锁实现和选型》文章介绍了分布式锁的重要性以及在分布式系统中常见的问题和需求,它详细阐述了如何使用分布式锁来确保数据的一致性和系统的高可用性,文章还提供了基于数据库、Redis和Zo... 目录引言:分布式锁的重要性与分布式系统中的常见问题和需求分布式锁的重要性分布式系统中常见的问题和需求

SpringBoot基于MyBatis-Plus实现Lambda Query查询的示例代码

《SpringBoot基于MyBatis-Plus实现LambdaQuery查询的示例代码》MyBatis-Plus是MyBatis的增强工具,简化了数据库操作,并提高了开发效率,它提供了多种查询方... 目录引言基础环境配置依赖配置(Maven)application.yml 配置表结构设计demo_st

使用Python绘制蛇年春节祝福艺术图

《使用Python绘制蛇年春节祝福艺术图》:本文主要介绍如何使用Python的Matplotlib库绘制一幅富有创意的“蛇年有福”艺术图,这幅图结合了数字,蛇形,花朵等装饰,需要的可以参考下... 目录1. 绘图的基本概念2. 准备工作3. 实现代码解析3.1 设置绘图画布3.2 绘制数字“2025”3.3

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

el-select下拉选择缓存的实现

《el-select下拉选择缓存的实现》本文主要介绍了在使用el-select实现下拉选择缓存时遇到的问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录项目场景:问题描述解决方案:项目场景:从左侧列表中选取字段填入右侧下拉多选框,用户可以对右侧

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

python 字典d[k]中key不存在的解决方案

《python字典d[k]中key不存在的解决方案》本文主要介绍了在Python中处理字典键不存在时获取默认值的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录defaultdict:处理找不到的键的一个选择特殊方法__missing__有时候为了方便起见,