异常检测—IsolationForest算法简介以及Python实现

2024-01-10 00:48

本文主要是介绍异常检测—IsolationForest算法简介以及Python实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

IsolationForest是一种适合高维数据集的异常值检测算法。

核心思想

通过随机切分数据集,异常点应该是容易被隔离的。

算法简介

  1. 随机选择一个特征,再在该特征下最大与最小值间随机选择一个值作为切分点,递归切分数据集,直到每个样本点被隔开,从而构建一颗类似CART分类树的随机树。重复构建多颗随机树。
  2. 从根节点到叶节点的路径越长,代表该点越难被隔离,即该点越不可能是异常点。计算每个样本点路径长的平均值,即得到该点得分,得分越低越可能是异常点。原论文中,提出了以下方法对异常分值进行归一化:
    论文图片
    式中 c ( ψ ) c(\psi) c(ψ)值样本的个数。s值越大越可能是异常值

代码示例

# 实现IsolationForest高维数据的异常值检测算法
import numpy as np
import math
from collections import Counterclass Node:def __init__(self, val=None, right=None, left=None):self.val = val  # 存储样本索引,仅叶节点self.right = rightself.left = leftclass RandomTree:def __init__(self):self.tree = Noneself.n_feas = Nonedef get_split(self, data, inds):# 随机构建切分点f = np.random.choice(self.n_feas)  # 随机选择一个特征up = max(data[inds, f])down = min(data[inds, f])v = (up - down) * np.random.sample() + down  # 在该特征的最大与最小值间随机选择一个数return f, vdef split(self, data, inds):# 切分数据集f, v = self.get_split(data, inds)left_ind = []right_ind = []for i in inds:if data[i, f] <= v:left_ind.append(i)else:right_ind.append(i)return left_ind, right_inddef buildTree(self, data, inds):if len(inds) < 3:  # 叶节点return Node(val=inds)left_ind, right_ind = self.split(data, inds)left = self.buildTree(data, left_ind)right = self.buildTree(data, right_ind)return Node(left=left, right=right)def fit(self, data):self.n_feas = data.shape[1]inds = np.arange(data.shape[0])self.tree = self.buildTree(data, inds)returndef traverse(self):# 遍历树,统计每个样本的路径长path_len = Counter()i = -1def helper(currentNode):nonlocal ii += 1if currentNode.val is not None:for ind in currentNode.val:path_len[ind] = ireturnfor child in [currentNode.left, currentNode.right]:helper(child)i -= 1returnhelper(self.tree)return path_lenclass IsolationForest:def __init__(self, n_tree, epsilon):self.n_tree = n_treeself.epsilon = epsilon  # 异常点比例self.scores = Counter()def fit_predict(self, data):for _ in range(self.n_tree):RT = RandomTree()RT.fit(data)path_len = RT.traverse()self.scores = self.scores + path_lenn_sample = data.shape[0]phi = 2 * math.log(n_sample - 1) - 2 * (n_sample - 1) / n_samplefor key, val in self.scores.items():self.scores[key] = 2 ** -(val / self.n_tree / phi)  # 归一化q = np.quantile(list(self.scores.values()), 1 - self.epsilon)outliers = [key for key, val in self.scores.items() if val > q]return outliersif __name__ == '__main__':np.random.seed(42)X_inliers = 0.3 * np.random.randn(100, 2)X_inliers = np.r_[X_inliers + 2, X_inliers - 2]X_outliers = np.random.uniform(low=-4, high=4, size=(20, 2))data = np.r_[X_inliers, X_outliers]IF = IsolationForest(100, 0.1)out_ind = IF.fit_predict(data)outliers = data[out_ind]import matplotlib.pyplot as pltplt.scatter(data[:, 0], data[:, 1], color='b')plt.scatter(outliers[:, 0], outliers[:, 1], color='r')plt.show()

参考资料

作者原论文
https://blog.csdn.net/u013709270/article/details/73436588

注:代码未经严格测试,仅作示例,如有不当之处,请指正。

这篇关于异常检测—IsolationForest算法简介以及Python实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/588991

相关文章

Python结合PyWebView库打造跨平台桌面应用

《Python结合PyWebView库打造跨平台桌面应用》随着Web技术的发展,将HTML/CSS/JavaScript与Python结合构建桌面应用成为可能,本文将系统讲解如何使用PyWebView... 目录一、技术原理与优势分析1.1 架构原理1.2 核心优势二、开发环境搭建2.1 安装依赖2.2 验

C#实现将Excel表格转换为图片(JPG/ PNG)

《C#实现将Excel表格转换为图片(JPG/PNG)》Excel表格可能会因为不同设备或字体缺失等问题,导致格式错乱或数据显示异常,转换为图片后,能确保数据的排版等保持一致,下面我们看看如何使用C... 目录通过C# 转换Excel工作表到图片通过C# 转换指定单元格区域到图片知识扩展C# 将 Excel

Android Mainline基础简介

《AndroidMainline基础简介》AndroidMainline是通过模块化更新Android核心组件的框架,可能提高安全性,本文给大家介绍AndroidMainline基础简介,感兴趣的朋... 目录关键要点什么是 android Mainline?Android Mainline 的工作原理关键

基于Java实现回调监听工具类

《基于Java实现回调监听工具类》这篇文章主要为大家详细介绍了如何基于Java实现一个回调监听工具类,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录监听接口类 Listenable实际用法打印结果首先,会用到 函数式接口 Consumer, 通过这个可以解耦回调方法,下面先写一个

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

Qt中QGroupBox控件的实现

《Qt中QGroupBox控件的实现》QGroupBox是Qt框架中一个非常有用的控件,它主要用于组织和管理一组相关的控件,本文主要介绍了Qt中QGroupBox控件的实现,具有一定的参考价值,感兴趣... 目录引言一、基本属性二、常用方法2.1 构造函数 2.2 设置标题2.3 设置复选框模式2.4 是否

一文详解如何在Python中从字符串中提取部分内容

《一文详解如何在Python中从字符串中提取部分内容》:本文主要介绍如何在Python中从字符串中提取部分内容的相关资料,包括使用正则表达式、Pyparsing库、AST(抽象语法树)、字符串操作... 目录前言解决方案方法一:使用正则表达式方法二:使用 Pyparsing方法三:使用 AST方法四:使用字

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

springboot整合阿里云百炼DeepSeek实现sse流式打印的操作方法

《springboot整合阿里云百炼DeepSeek实现sse流式打印的操作方法》:本文主要介绍springboot整合阿里云百炼DeepSeek实现sse流式打印,本文给大家介绍的非常详细,对大... 目录1.开通阿里云百炼,获取到key2.新建SpringBoot项目3.工具类4.启动类5.测试类6.测

Python列表去重的4种核心方法与实战指南详解

《Python列表去重的4种核心方法与实战指南详解》在Python开发中,处理列表数据时经常需要去除重复元素,本文将详细介绍4种最实用的列表去重方法,有需要的小伙伴可以根据自己的需要进行选择... 目录方法1:集合(set)去重法(最快速)方法2:顺序遍历法(保持顺序)方法3:副本删除法(原地修改)方法4: