GCF:在线市场异质治疗效果估计的广义因果森林

2024-01-09 20:20

本文主要是介绍GCF:在线市场异质治疗效果估计的广义因果森林,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

英文题目:GCF: Generalized Causal Forest for Heterogeneous Treatment Effects Estimation in Online Marketplace

中文题目:GCF:在线市场异质治疗效果估计的广义因果森林

单位:滴滴&美团

时间:2022

论文链接:https://arxiv.org/pdf/2203.10975.pdf

代码:GitHub - ehkennedy/npcausal

(该软件包提供了多种工具,可用于在各种设置中对因果关系进行非参数估计。这些方法基于影响函数理论,可以结合灵活的机器学习和高维回归工具,同时仍以置信区间和假设检验的形式产生推理。许多方法都倍加健壮。) 

摘要:

提升建模是一种快速增长的方法,它利用因果推理和机器学习方法直接估计异质治疗效果,近年来被广泛应用于各种在线市场来辅助大规模决策。现有的流行模型,如因果森林(CF),仅限于离散处理,或者对可能存在模型错误指定的结果处理关系提出参数假设。然而,连续处理(例如价格、持续时间)经常出现在市场中。为了缓解这些限制,我们使用基于核的双鲁棒估计器来恢复能够灵活建模连续治疗效果的非参数剂量响应函数。此外,我们提出了一种通用的基于距离的分裂准则来捕捉连续处理的异质性。我们将所提出的算法称为广义因果森林 (GCF),因为它将 CF 的用例推广到更广泛的设置。我们通过推导估计器的渐近性质并将其与合成数据集和真实数据集上流行的提升建模方法进行比较,证明了GCF的有效性。我们在Spark上实现了GCF,并在领先的拼车公司成功地将GCF部署到大规模在线定价系统中。在线 A/B 测试结果进一步验证了 GCF 的优越性。

关键词:效应估计、连续处理、提升建模、在线市场

1引言

DiDi、Uber 和 Lyft 等拼车平台的兴起有助于为乘客提供方便的移动服务,并为司机提供灵活的工作机会。然而,鉴于这种双边市场的高度动态性质,拼车平台有效地平衡需求和供应是非常具有挑战性的。例如,在短时间内,给定区域中空闲驱动程序的数量可以看作是一个常数,因为车辆重新定位需要时间。另一方面,由于价格的变化、ETA的干扰和道路拥堵的严重程度等各种原因,乘客的请求很容易转移。因此,调整需求是拼车平台策略的核心,经常引起更多的关注[19,26]。等待时间较长,此后损害了乘客的经验,恶化了市场的效率。在翻转方面,如果激励不够强,那么刺激足够的请求来平衡同一ODT上的空闲驱动程序可能是不够的。只有当准确估计需求价格曲线时,才能获得最佳折扣。然而,曲线在不同的 ODT 中可能存在显着差异。

例如,在图 2 中,我们展示了需求如何随着不同 ODT 的价格而变化。因此,不同 ODT 的相同折扣几乎没有意义。换句话说,平台应该通过利用 ODT 的特定信息和实时供需关系相应地为 ODT 分配适当的折扣,以识别折扣对需求曲线的影响。

更一般地说,问题是如何估计不同场景下对需求的折扣效应,正式描述为因果推理领域异质治疗效果(HTE)估计的问题,这对决策者在广泛的背景下的兴趣越来越大。它揭示了干预对亚组水平的影响,从而提供了高度量身定制的建议,而不是一刀切的策略。此外,对于在线拼车市场,(多个)连续处理很普遍,因为多个出行选项可用,如图1所示。在连续处理下估计因果效应对市场提出了挑战,同时保持了最大化其效率和性能的关键。

已经开发了一系列算法来解决 HTE 估计的问题。最早的解决方案可以追溯到隆升建模最吸引人的时候,如[23],最近被应用于在线市场,如[16,28]。然而,这些实现未能讨论如何减轻观测数据中普遍存在的混淆偏差。相比之下,统计和计量经济学方法,如因果森林(CF)[1,5]在混杂变量存在的情况下,直接考虑结果与治疗之间的关系。然而,估计量的理论性质建立在这样一个假设之上,即结果在治疗中部分是线性的。在实践中,折扣对请求的影响可以是任何处理的函数,如图2所示。为了解决这个问题,[2,6,18,27]提出使用非参数回归来解决非线性HTE估计。我们的工作建立在这些工作的理论结果之上。同时,该算法的可扩展性是将其部署到具有大量数据的在线市场的关键。近年来,还开发了基于神经网络的方法,例如 [22, 25],但它们缺乏可解释性,这在定价策略等高风险设置中很重要。

在本文中,我们通过提出广义休闲森林 (GCF) 来克服上述挑战,这是一种为连续治疗提供非参数 HTE 估计的方法。GCF 在合成数据集和真实数据集上都显示出与现有基线相比的优势,并展示了它在领先的拼车公司的在线部署方面的高性能。此外,我们在Spark上实现了GCF,并通过分布式计算获得了更高的计算效率,这为大规模在线市场的广泛应用铺平了道路。本文的其余部分安排如下。第 2 节介绍了初步符号和背景。然后在第 3 节中,我们正式提出了 GCF。我们通过将其应用于第 4 节中的合成数据集和真实数据集来验证 GCF 的性能。最后,在第 5 节中,GCF 的实际有效性通过其在在线实验中的卓越性能来证明。本节还简要介绍了GCF的Spark实现。我们在第 6 节中进行了一些讨论来结束本文。

2 初步

2.1 符号和假设

2.2剂量-响应函数

Dose-Response Function

2.3核回归和双/去偏估计器 

3 广义 CAUSAL FOREST

在本节中,我们正式介绍了所提出的算法,即 GCF。它通过考虑具有非参数DRF的新分裂准则并使用基于核的双鲁棒估计器对其进行估计,放宽了CF中处理响应关系的部分线性假设。在下文中,我们展示了 GCF 在训练阶段和预测阶段的工作流程,然后详细说明拆分标准 CATE 估计器及其渐近属性。补充部分给出了GCF的实际调整和Spark实现的细节。

我们的算法是在Spark上实现的,用于大规模数据处理,树增长过程的机制与CF的机制不同。准确地说,数据存储在主机器上,树被克隆到每个分支机器上。数据随机分布到分支机器进行并行计算,重新收集到主机器进行集成。树将由每个分支机器上的集成标准更新。该分布式框架利用了多台机器的计算效率并加快了训练过程。

3.1分裂准则

4实验

 

n:样本

t: treatment

pehe:

pmse:

4.2模拟

4.3 Real-world Datasets

评估

文章开始介绍了增益直方图,但是现在基本很少人用了,我这里就只介绍下常用的指标。

auuc和qini

Qini曲线和Uplift曲线有些类似 

5实施与部署

我们将我们的算法部署到领先的拼车公司的在线定价系统中。该系统旨在提供最佳定价策略,该策略支持超过 5 亿个乘客和数以万计的司机每天。鉴于如此大量的数据,我们在Spark上实现了GCF,通过分布式计算来加速模型训练。如图 4 所示,系统首先从实验系统中收集真实世界的数据。在下文中,数据被发送到模型训练模块,其中训练 GCF 和其他基线模型。随后,定制评估指标(例如,Qini 分数)选择的最佳模型为策略优化模块提供治疗效果预测,该模块为在线服务生成全局最优定价策略。为了检查我们模型的经验有效性,我们使用在线 A/B 测试比较了 GCF 和 CF 在两种业务设置下产生的折扣策略。我们通过将 ODT 随机分成两组来进行在线 A/B 测试。请注意,这里考虑的数据只占整个市场的一小部分,这意味着可以忽略网络效应。性能评估的关键指标是完成订单 (FO) 的增量,其结果如下。与 CF 相比,GCF 在单移动性选项策略和双移动性选项策略中分别提高了 15.1% 和 25.2%。结果表明,我们的模型可以更好地估计对复杂系统的治疗效果。

6结论

本文提出了一种新的基于森林的非参数算法,即广义因果森林,以解决连续处理的HTE估计问题。我们通过引入具有通用基于距离的分裂准则的DRF来扩展CF,该准则最大化连续治疗效果的异质性。为了估计DRF,我们使用基于核的双鲁棒估计器来保证双鲁棒性。为了处理大量的数据,我们在Spark上实现了GCF,并在领先的拼车公司成功地将GCF部署在在线定价系统中。实证结果表明,我们的方法明显优于竞争方法。在本文的范围内,我们只涵盖了一维连续处理的情况。但是我们建议的内容可以扩展到多维情况,而无需付出额外的努力。还值得一提的是,当处理空间较高且稀疏时,内核回归可能会受到维度诅咒的影响。更鲁棒的高维处理 HTE 估计算法有望成为未来的研究领域。

参考

做因果推断最难的是什么。 崔鹏教授说:最难的是评估,因为这是很上帝视角的东西。

  1. 因果推断uplift模型-GCF - 知乎
  2. DESCN:用于个体治疗效果估计的深度全空间交叉网络-CSDN博客
  3. 因果推断(三)各种效应和它们之间的关系
  4. 弹性模型的评测指标AUUC - 知乎

Causal Inference and Uplift Modeling A review of the literature重读笔记 - 知乎

Causal Inference and Uplift Modeling A review of the literature论文笔记 - 简书

大白话谈因果系列文章(五)uplift模型评估 - 知乎

闲聊因果效应(4):离线评估 - 知乎

因果推断 | Uplift Model 评估指标 - 知乎

这篇关于GCF:在线市场异质治疗效果估计的广义因果森林的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/588325

相关文章

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

基于Python实现PDF动画翻页效果的阅读器

《基于Python实现PDF动画翻页效果的阅读器》在这篇博客中,我们将深入分析一个基于wxPython实现的PDF阅读器程序,该程序支持加载PDF文件并显示页面内容,同时支持页面切换动画效果,文中有详... 目录全部代码代码结构初始化 UI 界面加载 PDF 文件显示 PDF 页面页面切换动画运行效果总结主

React实现原生APP切换效果

《React实现原生APP切换效果》最近需要使用Hybrid的方式开发一个APP,交互和原生APP相似并且需要IM通信,本文给大家介绍了使用React实现原生APP切换效果,文中通过代码示例讲解的非常... 目录背景需求概览技术栈实现步骤根据 react-router-dom 文档配置好路由添加过渡动画使用

使用Python实现生命之轮Wheel of life效果

《使用Python实现生命之轮Wheeloflife效果》生命之轮Wheeloflife这一概念最初由SuccessMotivation®Institute,Inc.的创始人PaulJ.Meyer... 最近看一个生命之轮的视频,让我们珍惜时间,因为一生是有限的。使用python创建生命倒计时图表,珍惜时间

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

电力系统中的A类在线监测装置—APView400

随着电力系统的日益复杂和人们对电能质量要求的提高,电能质量在线监测装置在电力系统中得到广泛应用。目前,市场上的在线监测装置主要分为A类和B类两种类型,A类和B类在线监测装置主要区别在于应用场景、技术参数、通讯协议和扩展性。选择时应根据实际需求和应用场景综合考虑,并定期维护和校准。电能质量在线监测装置是用于实时监测电力系统中的电能质量参数的设备。 APView400电能质量A类在线监测装置以其多核

防近视护眼台灯什么牌子好?五款防近视效果好的护眼台灯推荐

在家里,灯具是属于离不开的家具,每个大大小小的地方都需要的照亮,所以一盏好灯是必不可少的,每个发挥着作用。而护眼台灯就起了一个保护眼睛,预防近视的作用。可以保护我们在学习,阅读的时候提供一个合适的光线环境,保护我们的眼睛。防近视护眼台灯什么牌子好?那我们怎么选择一个优秀的护眼台灯也是很重要,才能起到最大的护眼效果。下面五款防近视效果好的护眼台灯推荐: 一:六个推荐防近视效果好的护眼台灯的

从戴尔公司中国大饭店DTF大会,看科技外企如何在中国市场发展

【科技明说 | 科技热点关注】 2024戴尔科技峰会在8月如期举行,虽然因事未能抵达现场参加,我只是观看了网上在线直播,也未能采访到DTF现场重要与会者,但是通过数十年对戴尔的跟踪与观察,我觉得2024戴尔科技峰会给业界传递了6大重要信号。不妨简单聊聊:从戴尔公司中国大饭店DTF大会,看科技外企如何在中国市场发展? 1)退出中国的谣言不攻自破。 之前有不良媒体宣扬戴尔将退出中国的谣言,随着2

JavaFX应用更新检测功能(在线自动更新方案)

JavaFX开发的桌面应用属于C端,一般来说需要版本检测和自动更新功能,这里记录一下一种版本检测和自动更新的方法。 1. 整体方案 JavaFX.应用版本检测、自动更新主要涉及一下步骤: 读取本地应用版本拉取远程版本并比较两个版本如果需要升级,那么拉取更新历史弹出升级控制窗口用户选择升级时,拉取升级包解压,重启应用用户选择忽略时,本地版本标志为忽略版本用户选择取消时,隐藏升级控制窗口 2.

Go Playground 在线编程环境

For all examples in this and the next chapter, we will use Go Playground. Go Playground represents a web service that can run programs written in Go. It can be opened in a web browser using the follow