第64课:SparkSQL下Parquet的数据切分和压缩内幕详解学习笔记

2024-01-09 19:08

本文主要是介绍第64课:SparkSQL下Parquet的数据切分和压缩内幕详解学习笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第64课:SparkSQLParquet的数据切分和压缩内幕详解学习笔记

本期内容:

1  SparkSQLParquet数据切分

2  SparkSQL下的Parquet数据压缩

 

Spark官网上的SparkSQL操作Parquet的实例进行讲解:

Schema Merging

Like ProtocolBuffer, Avro, and Thrift, Parquet also supports schema evolution. Users can start with a simple schema, and gradually add more columns to the schema as needed. In this way, users may end up with multiple Parquet files with different but mutually compatible schemas. The Parquet data source is now able to automatically detect this case and merge schemas of all these files.

 

Since schema merging is a relatively expensive operation, and is not a necessity in most cases, we turned it off by default starting from 1.5.0. You may enable it by

 

setting data source option mergeSchema to true when reading Parquet files (as shown in the examples below), or

setting the global SQL option spark.sql.parquet.mergeSchema to true.

// sqlContext from the previous example is used in this example.// This is used to implicitly convert an RDD to a DataFrame.

import sqlContext.implicits._

// Create a simple DataFrame, stored into a partition directory

val df1 = sc.makeRDD(1 to 5).map(i => (i, i * 2)).toDF("single", "double")

df1.write.parquet("data/test_table/key=1")

// Create another DataFrame in a new partition directory,// adding a new column and dropping an existing column

val df2 = sc.makeRDD(6 to 10).map(i => (i, i * 3)).toDF("single", "triple")

df2.write.parquet("data/test_table/key=2")

// Read the partitioned table

val df3 = sqlContext.read.option("mergeSchema", "true").parquet("data/test_table")

df3.printSchema()

// The final schema consists of all 3 columns in the Parquet files together// with the partitioning column appeared in the partition directory paths.// root// |-- single: int (nullable = true)// |-- double: int (nullable = true)// |-- triple: int (nullable = true)// |-- key : int (nullable = true)

 

 

实际运行结果:

scala> val df1 = sc.makeRDD(1 to 5).map(i => (i,i * 2)).toDF("single","double")

df1: org.apache.spark.sql.DataFrame = [single: int, double: int]

 

scala> df1.write.parquet("data/text_table/key=1")

16/04/02 04:27:07 INFO Configuration.deprecation: mapred.job.id is deprecated. Instead, use mapreduce.job.id

16/04/02 04:27:07 INFO Configuration.deprecation: mapred.tip.id is deprecated. Instead, use mapreduce.task.id

16/04/02 04:27:07 INFO Configuration.deprecation: mapred.task.id is deprecated. Instead, use mapreduce.task.attempt.id

16/04/02 04:27:07 INFO Configuration.deprecation: mapred.task.is.map is deprecated. Instead, use mapreduce.task.ismap

16/04/02 04:27:07 INFO Configuration.deprecation: mapred.task.partition is deprecated. Instead, use mapreduce.task.partition

16/04/02 04:27:07 INFO parquet.ParquetRelation: Using default output committer for Parquet: org.apache.parquet.hadoop.ParquetOutputCommitter

16/04/02 04:27:07 INFO datasources.DefaultWriterContainer: Using user defined output committer class org.apache.parquet.hadoop.ParquetOutputCommitter

16/04/02 04:27:09 INFO spark.SparkContext: Starting job: parquet at <console>:33

16/04/02 04:27:09 INFO scheduler.DAGScheduler: Got job 0 (parquet at <console>:33) with 3 output partitions

16/04/02 04:27:09 INFO scheduler.DAGScheduler: Final stage: ResultStage 0 (parquet at <console>:33)

16/04/02 04:27:09 INFO scheduler.DAGScheduler: Parents of final stage: List()

16/04/02 04:27:09 INFO scheduler.DAGScheduler: Missing parents: List()

16/04/02 04:27:09 INFO scheduler.DAGScheduler: Submitting ResultStage 0 (MapPartitionsRDD[3] at parquet at <console>:33), which has no missing parents

16/04/02 04:27:12 INFO storage.MemoryStore: Block broadcast_0 stored as values in memory (estimated size 68.0 KB, free 68.0 KB)

16/04/02 04:27:12 INFO storage.MemoryStore: Block broadcast_0_piece0 stored as bytes in memory (estimated size 24.6 KB, free 92.5 KB)

16/04/02 04:27:12 INFO storage.BlockManagerInfo: Added broadcast_0_piece0 in memory on 192.168.1.121:56069 (size: 24.6 KB, free: 517.4 MB)

16/04/02 04:27:12 INFO spark.SparkContext: Created broadcast 0 from broadcast at DAGScheduler.scala:1006

16/04/02 04:27:12 INFO scheduler.DAGScheduler: Submitting 3 missing tasks from ResultStage 0 (MapPartitionsRDD[3] at parquet at <console>:33)

16/04/02 04:27:12 INFO scheduler.TaskSchedulerImpl: Adding task set 0.0 with 3 tasks

16/04/02 04:27:13 INFO scheduler.TaskSetManager: Starting task 0.0 in stage 0.0 (TID 0, slq1, partition 0,PROCESS_LOCAL, 2078 bytes)

16/04/02 04:27:13 INFO scheduler.TaskSetManager: Starting task 1.0 in stage 0.0 (TID 1, slq2, partition 1,PROCESS_LOCAL, 2078 bytes)

16/04/02 04:27:13 INFO scheduler.TaskSetManager: Starting task 2.0 in stage 0.0 (TID 2, slq3, partition 2,PROCESS_LOCAL, 2135 bytes)

16/04/02 04:27:17 INFO storage.BlockManagerInfo: Added broadcast_0_piece0 in memory on slq2:44836 (size: 24.6 KB, free: 517.4 MB)

16/04/02 04:27:17 INFO storage.BlockManagerInfo: Added broadcast_0_piece0 in memory on slq3:53765 (size: 24.6 KB, free: 517.4 MB)

16/04/02 04:27:18 INFO storage.BlockManagerInfo: Added broadcast_0_piece0 in memory on slq1:44043 (size: 24.6 KB, free: 517.4 MB)

16/04/02 04:28:13 INFO scheduler.TaskSetManager: Finished task 2.0 in stage 0.0 (TID 2) in 60174 ms on slq3 (1/3)

16/04/02 04:28:16 INFO scheduler.TaskSetManager: Finished task 1.0 in stage 0.0 (TID 1) in 62700 ms on slq2 (2/3)

16/04/02 04:28:27 INFO scheduler.TaskSetManager: Finished task 0.0 in stage 0.0 (TID 0) in 74088 ms on slq1 (3/3)

16/04/02 04:28:27 INFO scheduler.DAGScheduler: ResultStage 0 (parquet at <console>:33) finished in 74.105 s

16/04/02 04:28:27 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool

16/04/02 04:28:27 INFO scheduler.DAGScheduler: Job 0 finished: parquet at <console>:33, took 78.540234 s

16/04/02 04:28:29 INFO hadoop.ParquetFileReader: Initiating action with parallelism: 5

SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".

SLF4J: Defaulting to no-operation (NOP) logger implementation

SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.

16/04/02 04:28:35 INFO datasources.DefaultWriterContainer: Job job_201604020427_0000 committed.

16/04/02 04:28:36 INFO parquet.ParquetRelation: Listing hdfs://slq1:9000/user/richard/data/text_table/key=1 on driver

16/04/02 04:28:36 INFO parquet.ParquetRelation: Listing hdfs://slq1:9000/user/richard/data/text_table/key=1 on driver

 

scala> 16/04/02 04:39:10 INFO storage.BlockManagerInfo: Removed broadcast_0_piece0 on slq2:44836 in memory (size: 24.6 KB, free: 517.4 MB)

16/04/02 04:39:10 INFO storage.BlockManagerInfo: Removed broadcast_0_piece0 on 192.168.1.121:56069 in memory (size: 24.6 KB, free: 517.4 MB)

16/04/02 04:39:11 INFO storage.BlockManagerInfo: Removed broadcast_0_piece0 on slq3:53765 in memory (size: 24.6 KB, free: 517.4 MB)

16/04/02 04:39:11 INFO storage.BlockManagerInfo: Removed broadcast_0_piece0 on slq1:44043 in memory (size: 24.6 KB, free: 517.4 MB)

16/04/02 04:39:11 INFO spark.ContextCleaner: Cleaned accumulator 3

16/04/02 04:39:11 INFO spark.ContextCleaner: Cleaned accumulator 2

 

 

scala> val df2 = sc.makeRDD(6 to 10).map(i => (i,i * 3)).toDF("single","triple")

df2: org.apache.spark.sql.DataFrame = [single: int, triple: int]

 

scala> df2.write.parquet("data/text_table/key=2")

16/04/02 04:56:13 INFO parquet.ParquetRelation: Using default output committer for Parquet: org.apache.parquet.hadoop.ParquetOutputCommitter

16/04/02 04:56:13 INFO datasources.DefaultWriterContainer: Using user defined output committer class org.apache.parquet.hadoop.ParquetOutputCommitter

16/04/02 04:56:14 INFO spark.SparkContext: Starting job: parquet at <console>:33

16/04/02 04:56:14 INFO scheduler.DAGScheduler: Got job 1 (parquet at <console>:33) with 3 output partitions

16/04/02 04:56:14 INFO scheduler.DAGScheduler: Final stage: ResultStage 1 (parquet at <console>:33)

16/04/02 04:56:14 INFO scheduler.DAGScheduler: Parents of final stage: List()

16/04/02 04:56:14 INFO scheduler.DAGScheduler: Missing parents: List()

16/04/02 04:56:14 INFO scheduler.DAGScheduler: Submitting ResultStage 1 (MapPartitionsRDD[14] at parquet at <console>:33), which has no missing parents

16/04/02 04:56:14 INFO storage.MemoryStore: Block broadcast_1 stored as values in memory (estimated size 68.0 KB, free 68.0 KB)

16/04/02 04:56:14 INFO storage.MemoryStore: Block broadcast_1_piece0 stored as bytes in memory (estimated size 24.6 KB, free 92.5 KB)

16/04/02 04:56:14 INFO storage.BlockManagerInfo: Added broadcast_1_piece0 in memory on 192.168.1.121:56069 (size: 24.6 KB, free: 517.4 MB)

16/04/02 04:56:14 INFO spark.SparkContext: Created broadcast 1 from broadcast at DAGScheduler.scala:1006

16/04/02 04:56:14 INFO scheduler.DAGScheduler: Submitting 3 missing tasks from ResultStage 1 (MapPartitionsRDD[14] at parquet at <console>:33)

16/04/02 04:56:14 INFO scheduler.TaskSchedulerImpl: Adding task set 1.0 with 3 tasks

16/04/02 04:56:14 INFO scheduler.TaskSetManager: Starting task 0.0 in stage 1.0 (TID 3, slq1, partition 0,PROCESS_LOCAL, 2078 bytes)

16/04/02 04:56:14 INFO scheduler.TaskSetManager: Starting task 1.0 in stage 1.0 (TID 4, slq2, partition 1,PROCESS_LOCAL, 2078 bytes)

16/04/02 04:56:14 INFO scheduler.TaskSetManager: Starting task 2.0 in stage 1.0 (TID 5, slq3, partition 2,PROCESS_LOCAL, 2135 bytes)

16/04/02 04:56:15 INFO storage.BlockManagerInfo: Added broadcast_1_piece0 in memory on slq3:53765 (size: 24.6 KB, free: 517.4 MB)

16/04/02 04:56:15 INFO storage.BlockManagerInfo: Added broadcast_1_piece0 in memory on slq2:44836 (size: 24.6 KB, free: 517.4 MB)

16/04/02 04:56:15 INFO storage.BlockManagerInfo: Added broadcast_1_piece0 in memory on slq1:44043 (size: 24.6 KB, free: 517.4 MB)

16/04/02 04:56:16 INFO scheduler.TaskSetManager: Finished task 1.0 in stage 1.0 (TID 4) in 1472 ms on slq2 (1/3)

16/04/02 04:56:16 INFO scheduler.TaskSetManager: Finished task 2.0 in stage 1.0 (TID 5) in 1486 ms on slq3 (2/3)

16/04/02 04:56:16 INFO scheduler.TaskSetManager: Finished task 0.0 in stage 1.0 (TID 3) in 2093 ms on slq1 (3/3)

16/04/02 04:56:16 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 1.0, whose tasks have all completed, from pool

16/04/02 04:56:16 INFO scheduler.DAGScheduler: ResultStage 1 (parquet at <console>:33) finished in 2.095 s

16/04/02 04:56:16 INFO scheduler.DAGScheduler: Job 1 finished: parquet at <console>:33, took 2.673089 s

16/04/02 04:56:17 INFO hadoop.ParquetFileReader: Initiating action with parallelism: 5

16/04/02 04:56:18 INFO datasources.DefaultWriterContainer: Job job_201604020456_0000 committed.

16/04/02 04:56:18 INFO parquet.ParquetRelation: Listing hdfs://slq1:9000/user/richard/data/text_table/key=2 on driver

16/04/02 04:56:18 INFO parquet.ParquetRelation: Listing hdfs://slq1:9000/user/richard/data/text_table/key=2 on driver

 

scala> val df3 = sqlContext.read.option("mergeSchema","true").parquet("data/text_table")

16/04/02 05:00:59 INFO parquet.ParquetRelation: Listing hdfs://slq1:9000/user/richard/data/text_table on driver

16/04/02 05:00:59 INFO parquet.ParquetRelation: Listing hdfs://slq1:9000/user/richard/data/text_table/key=1 on driver

16/04/02 05:00:59 INFO parquet.ParquetRelation: Listing hdfs://slq1:9000/user/richard/data/text_table/key=2 on driver

16/04/02 05:01:00 INFO spark.SparkContext: Starting job: parquet at <console>:28

16/04/02 05:01:00 INFO scheduler.DAGScheduler: Got job 2 (parquet at <console>:28) with 3 output partitions

16/04/02 05:01:00 INFO scheduler.DAGScheduler: Final stage: ResultStage 2 (parquet at <console>:28)

16/04/02 05:01:00 INFO scheduler.DAGScheduler: Parents of final stage: List()

16/04/02 05:01:00 INFO scheduler.DAGScheduler: Missing parents: List()

16/04/02 05:01:00 INFO scheduler.DAGScheduler: Submitting ResultStage 2 (MapPartitionsRDD[17] at parquet at <console>:28), which has no missing parents

16/04/02 05:01:00 INFO storage.MemoryStore: Block broadcast_2 stored as values in memory (estimated size 61.7 KB, free 154.2 KB)

16/04/02 05:01:00 INFO storage.MemoryStore: Block broadcast_2_piece0 stored as bytes in memory (estimated size 21.0 KB, free 175.2 KB)

16/04/02 05:01:00 INFO storage.BlockManagerInfo: Added broadcast_2_piece0 in memory on 192.168.1.121:56069 (size: 21.0 KB, free: 517.4 MB)

16/04/02 05:01:00 INFO spark.SparkContext: Created broadcast 2 from broadcast at DAGScheduler.scala:1006

16/04/02 05:01:00 INFO scheduler.DAGScheduler: Submitting 3 missing tasks from ResultStage 2 (MapPartitionsRDD[17] at parquet at <console>:28)

16/04/02 05:01:00 INFO scheduler.TaskSchedulerImpl: Adding task set 2.0 with 3 tasks

16/04/02 05:01:00 INFO scheduler.TaskSetManager: Starting task 0.0 in stage 2.0 (TID 6, slq3, partition 0,PROCESS_LOCAL, 2524 bytes)

16/04/02 05:01:00 INFO scheduler.TaskSetManager: Starting task 1.0 in stage 2.0 (TID 7, slq1, partition 1,PROCESS_LOCAL, 2524 bytes)

16/04/02 05:01:00 INFO scheduler.TaskSetManager: Starting task 2.0 in stage 2.0 (TID 8, slq2, partition 2,PROCESS_LOCAL, 2469 bytes)

16/04/02 05:01:00 INFO storage.BlockManagerInfo: Added broadcast_2_piece0 in memory on slq2:44836 (size: 21.0 KB, free: 517.4 MB)

16/04/02 05:01:00 INFO storage.BlockManagerInfo: Added broadcast_2_piece0 in memory on slq3:53765 (size: 21.0 KB, free: 517.4 MB)

16/04/02 05:01:01 INFO storage.BlockManagerInfo: Added broadcast_2_piece0 in memory on slq1:44043 (size: 21.0 KB, free: 517.4 MB)

16/04/02 05:01:02 INFO scheduler.TaskSetManager: Finished task 0.0 in stage 2.0 (TID 6) in 1697 ms on slq3 (1/3)

16/04/02 05:01:02 INFO scheduler.TaskSetManager: Finished task 2.0 in stage 2.0 (TID 8) in 2189 ms on slq2 (2/3)

16/04/02 05:01:05 INFO scheduler.TaskSetManager: Finished task 1.0 in stage 2.0 (TID 7) in 4740 ms on slq1 (3/3)

16/04/02 05:01:05 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 2.0, whose tasks have all completed, from pool

16/04/02 05:01:05 INFO scheduler.DAGScheduler: ResultStage 2 (parquet at <console>:28) finished in 4.804 s

16/04/02 05:01:05 INFO scheduler.DAGScheduler: Job 2 finished: parquet at <console>:28, took 5.169726 s

df3: org.apache.spark.sql.DataFrame = [single: int, double: int, triple: int, key: int]

 

scala> df3.printSchema()

root

 |-- single: integer (nullable = true)

 |-- double: integer (nullable = true)

 |-- triple: integer (nullable = true)

 |-- key: integer (nullable = true)

 

 

scala> df3.show()

16/04/02 05:03:35 INFO datasources.DataSourceStrategy: Selected 2 partitions out of 2, pruned 0.0% partitions.

16/04/02 05:03:36 INFO storage.MemoryStore: Block broadcast_3 stored as values in memory (estimated size 62.4 KB, free 237.6 KB)

16/04/02 05:03:36 INFO storage.MemoryStore: Block broadcast_3_piece0 stored as bytes in memory (estimated size 19.7 KB, free 257.3 KB)

16/04/02 05:03:36 INFO storage.BlockManagerInfo: Added broadcast_3_piece0 in memory on 192.168.1.121:56069 (size: 19.7 KB, free: 517.3 MB)

16/04/02 05:03:36 INFO spark.SparkContext: Created broadcast 3 from show at <console>:31

16/04/02 05:03:38 INFO Configuration.deprecation: mapred.min.split.size is deprecated. Instead, use mapreduce.input.fileinputformat.split.minsize

16/04/02 05:03:38 INFO parquet.ParquetRelation: Reading Parquet file(s) from hdfs://slq1:9000/user/richard/data/text_table/key=2/part-r-00000-2f220b3f-43a1-4093-ad51-1d3af7707ca8.gz.parquet, hdfs://slq1:9000/user/richard/data/text_table/key=2/part-r-00001-2f220b3f-43a1-4093-ad51-1d3af7707ca8.gz.parquet, hdfs://slq1:9000/user/richard/data/text_table/key=2/part-r-00002-2f220b3f-43a1-4093-ad51-1d3af7707ca8.gz.parquet

16/04/02 05:03:38 INFO parquet.ParquetRelation: Reading Parquet file(s) from hdfs://slq1:9000/user/richard/data/text_table/key=1/part-r-00000-f6a15341-401e-41b0-8f8a-acbf97ce42fb.gz.parquet, hdfs://slq1:9000/user/richard/data/text_table/key=1/part-r-00001-f6a15341-401e-41b0-8f8a-acbf97ce42fb.gz.parquet, hdfs://slq1:9000/user/richard/data/text_table/key=1/part-r-00002-f6a15341-401e-41b0-8f8a-acbf97ce42fb.gz.parquet

16/04/02 05:03:38 INFO spark.SparkContext: Starting job: show at <console>:31

16/04/02 05:03:38 INFO scheduler.DAGScheduler: Got job 3 (show at <console>:31) with 1 output partitions

16/04/02 05:03:38 INFO scheduler.DAGScheduler: Final stage: ResultStage 3 (show at <console>:31)

16/04/02 05:03:38 INFO scheduler.DAGScheduler: Parents of final stage: List()

16/04/02 05:03:38 INFO scheduler.DAGScheduler: Missing parents: List()

16/04/02 05:03:38 INFO scheduler.DAGScheduler: Submitting ResultStage 3 (MapPartitionsRDD[24] at show at <console>:31), which has no missing parents

16/04/02 05:03:38 INFO storage.MemoryStore: Block broadcast_4 stored as values in memory (estimated size 7.1 KB, free 264.4 KB)

16/04/02 05:03:38 INFO storage.MemoryStore: Block broadcast_4_piece0 stored as bytes in memory (estimated size 3.9 KB, free 268.4 KB)

16/04/02 05:03:38 INFO storage.BlockManagerInfo: Added broadcast_4_piece0 in memory on 192.168.1.121:56069 (size: 3.9 KB, free: 517.3 MB)

16/04/02 05:03:38 INFO spark.SparkContext: Created broadcast 4 from broadcast at DAGScheduler.scala:1006

16/04/02 05:03:38 INFO scheduler.DAGScheduler: Submitting 1 missing tasks from ResultStage 3 (MapPartitionsRDD[24] at show at <console>:31)

16/04/02 05:03:38 INFO scheduler.TaskSchedulerImpl: Adding task set 3.0 with 1 tasks

16/04/02 05:03:39 INFO scheduler.TaskSetManager: Starting task 0.0 in stage 3.0 (TID 9, slq1, partition 0,NODE_LOCAL, 2353 bytes)

16/04/02 05:03:39 INFO storage.BlockManagerInfo: Added broadcast_4_piece0 in memory on slq1:44043 (size: 3.9 KB, free: 517.4 MB)

16/04/02 05:03:39 INFO storage.BlockManagerInfo: Added broadcast_3_piece0 in memory on slq1:44043 (size: 19.7 KB, free: 517.3 MB)

16/04/02 05:03:44 INFO scheduler.TaskSetManager: Finished task 0.0 in stage 3.0 (TID 9) in 5898 ms on slq1 (1/1)

16/04/02 05:03:44 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 3.0, whose tasks have all completed, from pool

16/04/02 05:03:44 INFO scheduler.DAGScheduler: ResultStage 3 (show at <console>:31) finished in 5.901 s

16/04/02 05:03:44 INFO scheduler.DAGScheduler: Job 3 finished: show at <console>:31, took 6.358506 s

16/04/02 05:03:44 INFO spark.SparkContext: Starting job: show at <console>:31

16/04/02 05:03:44 INFO scheduler.DAGScheduler: Got job 4 (show at <console>:31) with 5 output partitions

16/04/02 05:03:44 INFO scheduler.DAGScheduler: Final stage: ResultStage 4 (show at <console>:31)

16/04/02 05:03:44 INFO scheduler.DAGScheduler: Parents of final stage: List()

16/04/02 05:03:44 INFO scheduler.DAGScheduler: Missing parents: List()

16/04/02 05:03:44 INFO scheduler.DAGScheduler: Submitting ResultStage 4 (MapPartitionsRDD[24] at show at <console>:31), which has no missing parents

16/04/02 05:03:45 INFO storage.MemoryStore: Block broadcast_5 stored as values in memory (estimated size 7.1 KB, free 275.4 KB)

16/04/02 05:03:45 INFO storage.MemoryStore: Block broadcast_5_piece0 stored as bytes in memory (estimated size 3.9 KB, free 279.4 KB)

16/04/02 05:03:45 INFO storage.BlockManagerInfo: Added broadcast_5_piece0 in memory on 192.168.1.121:56069 (size: 3.9 KB, free: 517.3 MB)

16/04/02 05:03:45 INFO spark.SparkContext: Created broadcast 5 from broadcast at DAGScheduler.scala:1006

16/04/02 05:03:45 INFO scheduler.DAGScheduler: Submitting 5 missing tasks from ResultStage 4 (MapPartitionsRDD[24] at show at <console>:31)

16/04/02 05:03:45 INFO scheduler.TaskSchedulerImpl: Adding task set 4.0 with 5 tasks

16/04/02 05:03:45 INFO scheduler.TaskSetManager: Starting task 0.0 in stage 4.0 (TID 10, slq3, partition 1,NODE_LOCAL, 2354 bytes)

16/04/02 05:03:45 INFO scheduler.TaskSetManager: Starting task 1.0 in stage 4.0 (TID 11, slq1, partition 2,NODE_LOCAL, 2354 bytes)

16/04/02 05:03:45 INFO scheduler.TaskSetManager: Starting task 2.0 in stage 4.0 (TID 12, slq2, partition 3,NODE_LOCAL, 2353 bytes)

16/04/02 05:03:45 INFO storage.BlockManagerInfo: Added broadcast_5_piece0 in memory on slq1:44043 (size: 3.9 KB, free: 517.3 MB)

16/04/02 05:03:45 INFO storage.BlockManagerInfo: Added broadcast_5_piece0 in memory on slq2:44836 (size: 3.9 KB, free: 517.4 MB)

16/04/02 05:03:45 INFO storage.BlockManagerInfo: Added broadcast_5_piece0 in memory on slq3:53765 (size: 3.9 KB, free: 517.4 MB)

16/04/02 05:03:45 INFO storage.BlockManagerInfo: Added broadcast_3_piece0 in memory on slq3:53765 (size: 19.7 KB, free: 517.3 MB)

16/04/02 05:03:46 INFO scheduler.TaskSetManager: Starting task 3.0 in stage 4.0 (TID 13, slq1, partition 4,NODE_LOCAL, 2354 bytes)

16/04/02 05:03:46 INFO scheduler.TaskSetManager: Finished task 1.0 in stage 4.0 (TID 11) in 1205 ms on slq1 (1/5)

16/04/02 05:03:47 INFO scheduler.TaskSetManager: Starting task 4.0 in stage 4.0 (TID 14, slq1, partition 5,NODE_LOCAL, 2354 bytes)

16/04/02 05:03:47 INFO scheduler.TaskSetManager: Finished task 3.0 in stage 4.0 (TID 13) in 703 ms on slq1 (2/5)

16/04/02 05:03:47 INFO storage.BlockManagerInfo: Added broadcast_3_piece0 in memory on slq2:44836 (size: 19.7 KB, free: 517.3 MB)

16/04/02 05:03:49 INFO scheduler.TaskSetManager: Finished task 4.0 in stage 4.0 (TID 14) in 2032 ms on slq1 (3/5)

16/04/02 05:03:52 INFO scheduler.TaskSetManager: Finished task 0.0 in stage 4.0 (TID 10) in 7654 ms on slq3 (4/5)

16/04/02 05:03:54 INFO scheduler.TaskSetManager: Finished task 2.0 in stage 4.0 (TID 12) in 9789 ms on slq2 (5/5)

16/04/02 05:03:54 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 4.0, whose tasks have all completed, from pool

16/04/02 05:03:54 INFO scheduler.DAGScheduler: ResultStage 4 (show at <console>:31) finished in 9.805 s

16/04/02 05:03:54 INFO scheduler.DAGScheduler: Job 4 finished: show at <console>:31, took 9.980420 s

+------+------+------+---+

|single|double|triple|key|

+------+------+------+---+

|     6|  null|    18|  2|

|     7|  null|    21|  2|

|     8|  null|    24|  2|

|     9|  null|    27|  2|

|    10|  null|    30|  2|

|     1|     2|  null|  1|

|     2|     4|  null|  1|

|     3|     6|  null|  1|

|     4|     8|  null|  1|

|     5|    10|  null|  1|

+------+------+------+---+

 

16/04/02 05:09:12 INFO storage.BlockManagerInfo: Removed broadcast_5_piece0 on 192.168.1.121:56069 in memory (size: 3.9 KB, free: 517.3 MB)

16/04/02 05:09:12 INFO storage.BlockManagerInfo: Removed broadcast_5_piece0 on slq1:44043 in memory (size: 3.9 KB, free: 517.3 MB)

16/04/02 05:09:12 INFO storage.BlockManagerInfo: Removed broadcast_5_piece0 on slq3:53765 in memory (size: 3.9 KB, free: 517.3 MB)

16/04/02 05:09:12 INFO storage.BlockManagerInfo: Removed broadcast_5_piece0 on slq2:44836 in memory (size: 3.9 KB, free: 517.3 MB)

16/04/02 05:09:12 INFO spark.ContextCleaner: Cleaned accumulator 8

16/04/02 05:09:12 INFO storage.BlockManagerInfo: Removed broadcast_4_piece0 on 192.168.1.121:56069 in memory (size: 3.9 KB, free: 517.3 MB)

16/04/02 05:09:12 INFO storage.BlockManagerInfo: Removed broadcast_4_piece0 on slq1:44043 in memory (size: 3.9 KB, free: 517.3 MB)

16/04/02 05:09:12 INFO spark.ContextCleaner: Cleaned accumulator 7

16/04/02 05:09:12 INFO storage.BlockManagerInfo: Removed broadcast_3_piece0 on 192.168.1.121:56069 in memory (size: 19.7 KB, free: 517.4 MB)

16/04/02 05:09:12 INFO storage.BlockManagerInfo: Removed broadcast_3_piece0 on slq3:53765 in memory (size: 19.7 KB, free: 517.4 MB)

16/04/02 05:09:12 INFO storage.BlockManagerInfo: Removed broadcast_3_piece0 on slq2:44836 in memory (size: 19.7 KB, free: 517.4 MB)

16/04/02 05:09:12 INFO storage.BlockManagerInfo: Removed broadcast_3_piece0 on slq1:44043 in memory (size: 19.7 KB, free: 517.4 MB)

16/04/02 05:09:12 INFO storage.BlockManagerInfo: Removed broadcast_2_piece0 on 192.168.1.121:56069 in memory (size: 21.0 KB, free: 517.4 MB)

16/04/02 05:09:12 INFO storage.BlockManagerInfo: Removed broadcast_2_piece0 on slq1:44043 in memory (size: 21.0 KB, free: 517.4 MB)

16/04/02 05:09:12 INFO storage.BlockManagerInfo: Removed broadcast_2_piece0 on slq3:53765 in memory (size: 21.0 KB, free: 517.4 MB)

16/04/02 05:09:12 INFO storage.BlockManagerInfo: Removed broadcast_2_piece0 on slq2:44836 in memory (size: 21.0 KB, free: 517.4 MB)

16/04/02 05:09:12 INFO spark.ContextCleaner: Cleaned accumulator 6

16/04/02 05:09:12 INFO storage.BlockManagerInfo: Removed broadcast_1_piece0 on 192.168.1.121:56069 in memory (size: 24.6 KB, free: 517.4 MB)

16/04/02 05:09:12 INFO storage.BlockManagerInfo: Removed broadcast_1_piece0 on slq3:53765 in memory (size: 24.6 KB, free: 517.4 MB)

16/04/02 05:09:12 INFO storage.BlockManagerInfo: Removed broadcast_1_piece0 on slq2:44836 in memory (size: 24.6 KB, free: 517.4 MB)

16/04/02 05:09:12 INFO storage.BlockManagerInfo: Removed broadcast_1_piece0 on slq1:44043 in memory (size: 24.6 KB, free: 517.4 MB)

16/04/02 05:09:13 INFO spark.ContextCleaner: Cleaned accumulator 5

16/04/02 05:09:13 INFO spark.ContextCleaner: Cleaned accumulator 4

 

 

 

实例中使用了df.write方法将DataFrame数据以parquet格式写入到HDFS上。

下面从源码的角度解读此实例:

DataFrame.scala类中,可以找到write方法:

/**
 * :: Experimental ::
 * Interface for saving the content of the
[[DataFrame]] out into external storage.
 *
 *
@group output
 *
@since 1.4.0
 */
@Experimental
def write: DataFrameWriter = new DataFrameWriter(this)

可以看出,DataFramewrite方法直接生成了一个DataFrameWriter实例。

DataFrameWriter类中可以找到parquet方法:

/**
 * Saves the content of the
[[DataFrame]] in Parquet format at the specified path.
 * This is equivalent to:
 *
{{{
 *   format("parquet").save(path)
 *
}}}
 *
 *
@since 1.4.0
 */
def parquet(path: String): Unit = format("parquet").save(path)

可以看出parquet方法只是format("parquet").save(path)方法的快捷方式。

format方法的源码如下:

/**
 * Specifies the underlying output data source. Built-in options include "parquet", "json", etc.
 *
 *
@since 1.4.0
 */
def format(source: String): DataFrameWriter = {
  this.source = source
  this
}

format方法只是返回“parquet”格式名称本身,然后进行save操作。

/**
 * Saves the content of the
[[DataFrame]] at the specified path.
 *
 *
@since 1.4.0
 */
def save(path: String): Unit = {
  this.extraOptions += ("path" -> path)
  save()
}

可以看出save操作中调用了extraOptions方法:

private var extraOptions = new scala.collection.mutable.HashMap[String, String]

可以看出extraOptions 是一个HashMap

save操作还调用了save()方法:

/**
 * Saves the content of the
[[DataFrame]] as the specified table.
 *
 *
@since 1.4.0
 */
def save(): Unit = {
  ResolvedDataSource(
    df.sqlContext,
    source,
    partitioningColumns.map(_.toArray).getOrElse(Array.empty[String]),
    mode,
    extraOptions.toMap,
    df)
}

save()方法主要就是调用ResolvedDataSource的apply方法:

/** Create a [[ResolvedDataSource]] for saving the content of the given DataFrame. */
  
def apply(
      sqlContext: SQLContext,  //对应save()方法中的df.sqlContext。
      provider: String,    //对应save()方法中的source,即“parquet”格式名称
      partitionColumns: Array[String],
      mode: SaveMode,
      options: Map[String, String],
      data: DataFrame): ResolvedDataSource = {
    if (data.schema.map(_.dataType).exists(_.isInstanceOf[CalendarIntervalType])) {
      throw new AnalysisException("Cannot save interval data type into external storage.")
    }
    val clazz: Class[_] = lookupDataSource(provider)
    val relation = clazz.newInstance() match {
      case dataSource: CreatableRelationProvider =>
        dataSource.createRelation(sqlContext, mode, options, data)
      case dataSource: HadoopFsRelationProvider =>
        // Don't glob path for the write path.  The contracts here are:
        //  1. Only one output path can be specified on the write path;
        //  2. Output path must be a legal HDFS style file system path;
        //  3. It's OK that the output path doesn't exist yet;
        
val caseInsensitiveOptions = new CaseInsensitiveMap(options)
        val outputPath = {
          val path = new Path(caseInsensitiveOptions("path"))
          val fs = path.getFileSystem(sqlContext.sparkContext.hadoopConfiguration)
          path.makeQualified(fs.getUri, fs.getWorkingDirectory)
        }

        val caseSensitive = sqlContext.conf.caseSensitiveAnalysis
        PartitioningUtils.validatePartitionColumnDataTypes(
          data.schema, partitionColumns, caseSensitive)

        val equality = columnNameEquality(caseSensitive)
        val dataSchema = StructType(
          data.schema.filterNot(f => partitionColumns.exists(equality(_, f.name))))
        val r = dataSource.createRelation(
          sqlContext,
          Array(outputPath.toString),
          Some(dataSchema.asNullable),
          Some(partitionColumnsSchema(data.schema, partitionColumns, caseSensitive)),
          caseInsensitiveOptions)

        // For partitioned relation r, r.schema's column ordering can be different from the column
        // ordering of data.logicalPlan (partition columns are all moved after data column).  This
        // will be adjusted within InsertIntoHadoopFsRelation.
        
sqlContext.executePlan(
          InsertIntoHadoopFsRelation(
            r,
            data.logicalPlan,
            mode)).toRdd
        
r
      case _ =>
        sys.error(s"${clazz.getCanonicalName} does not allow create table as select.")
    }
    ResolvedDataSource(clazz, relation)
  }
}

 

save()方法中的source的源码为:

private var source: String = df.sqlContext.conf.defaultDataSourceName

SQLContext的conf中的defaultDataSourceName方法为:

private[spark] def defaultDataSourceName: String = getConf(DEFAULT_DATA_SOURCE_NAME)

在SQLConf.scala中可以看到:
// This is used to set the default data source
val DEFAULT_DATA_SOURCE_NAME = stringConf("spark.sql.sources.default",
  defaultValue = Some("org.apache.spark.sql.parquet"),
  doc = "The default data source to use in input/output.")

即默认数据源是parquet

 

parquet.block.size基本上是压缩后的大小。读取数据时可能数据还在encoding

 

page内部有repetitionLevel DefinitionLevel data

Java的二进制就是字节流

Parquet非常耗内存,采用高压缩比率,采用很多Cache

解压后的大小是解压前的5-10倍。

BlockSize采用默认256MB

 

 

 

 

 

以上内容是王家林老师DT大数据梦工厂《 IMF传奇行动》第64课的学习笔记。
王家林老师是Spark、Flink、Docker、Android技术中国区布道师。Spark亚太研究院院长和首席专家,DT大数据梦工厂创始人,Android软硬整合源码级专家,英语发音魔术师,健身狂热爱好者。

微信公众账号:DT_Spark

联系邮箱18610086859@126.com 

电话:18610086859

QQ:1740415547

微信号:18610086859  

新浪微博:ilovepains


 

 

这篇关于第64课:SparkSQL下Parquet的数据切分和压缩内幕详解学习笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/588125

相关文章

Debezium 与 Apache Kafka 的集成方式步骤详解

《Debezium与ApacheKafka的集成方式步骤详解》本文详细介绍了如何将Debezium与ApacheKafka集成,包括集成概述、步骤、注意事项等,通过KafkaConnect,D... 目录一、集成概述二、集成步骤1. 准备 Kafka 环境2. 配置 Kafka Connect3. 安装 D

Java中ArrayList和LinkedList有什么区别举例详解

《Java中ArrayList和LinkedList有什么区别举例详解》:本文主要介绍Java中ArrayList和LinkedList区别的相关资料,包括数据结构特性、核心操作性能、内存与GC影... 目录一、底层数据结构二、核心操作性能对比三、内存与 GC 影响四、扩容机制五、线程安全与并发方案六、工程

Spring Cloud LoadBalancer 负载均衡详解

《SpringCloudLoadBalancer负载均衡详解》本文介绍了如何在SpringCloud中使用SpringCloudLoadBalancer实现客户端负载均衡,并详细讲解了轮询策略和... 目录1. 在 idea 上运行多个服务2. 问题引入3. 负载均衡4. Spring Cloud Load

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

SQL 中多表查询的常见连接方式详解

《SQL中多表查询的常见连接方式详解》本文介绍SQL中多表查询的常见连接方式,包括内连接(INNERJOIN)、左连接(LEFTJOIN)、右连接(RIGHTJOIN)、全外连接(FULLOUTER... 目录一、连接类型图表(ASCII 形式)二、前置代码(创建示例表)三、连接方式代码示例1. 内连接(I

Go路由注册方法详解

《Go路由注册方法详解》Go语言中,http.NewServeMux()和http.HandleFunc()是两种不同的路由注册方式,前者创建独立的ServeMux实例,适合模块化和分层路由,灵活性高... 目录Go路由注册方法1. 路由注册的方式2. 路由器的独立性3. 灵活性4. 启动服务器的方式5.

Java中八大包装类举例详解(通俗易懂)

《Java中八大包装类举例详解(通俗易懂)》:本文主要介绍Java中的包装类,包括它们的作用、特点、用途以及如何进行装箱和拆箱,包装类还提供了许多实用方法,如转换、获取基本类型值、比较和类型检测,... 目录一、包装类(Wrapper Class)1、简要介绍2、包装类特点3、包装类用途二、装箱和拆箱1、装

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操