爬虫——Python 爬取51job 职位信息

2024-01-09 18:30

本文主要是介绍爬虫——Python 爬取51job 职位信息,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

既然要爬取职位信息,那么首先要弄清楚目标页面的分布规律。
在这里插入图片描述

输入职位关键词和相应的地点等条件,然后搜索就可以看到岗位信息。

首先通过翻页来查看url的变化,以此来找到翻页时url的规律

把前面几页的url 复制下来放到文本文档里对比
在这里插入图片描述

不难发现除了页码外其他都没有改变

下面开始代码

# 导入相应的包
#-*-coding:utf-8-*-
from bs4 import BeautifulSoup
import requests
import chardet
from lxml import etree

编写一个函数来获取每页的 html 信息

def get_content(page): #   获取每页全部 html信息       # 爬取的页面 urlurl='https://search.51job.com/list/080200,000000,0000,00,9,99,Python,2,'+str(page)+'.html?lang=c&stype=1&postchannel\=0000&workyear=99&cotype=99&degreefrom=99&jobterm=99&companysize=99&lonlat=0%2C0&radius=-1&ord_field=0&confirmdate=9&fromType=&dibiaoid=0&address=&line=&specialarea=00&from=&welfare='# 设置代理信息headers={'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3626.109 Safari/537.36'}# requests 获取页面信息rqg=requests.get(url,headers=headers)# 字符转码rqg.encoding=chardet.detect(rqg.content)['encoding']   rqg.encoding="iso-8859-1"html=rqg.content.decode('iso-8859-1').encode('iso-8859-1')soup=BeautifulSoup(html,'lxml')soup.prettify()  #格式化soup对象return soup # 返回soup对象

接下来设置列表以存储相应的数据

Name=[]    # 初步存储职位名称信息(有 \n\n 的)
Name1=[]    # 存储最终的职位名称
Company=[]  # 公司名称
Location=[] # 工作地点 
Salary=[]   # 薪资
Published=[]  # 发布时间

从每页数据中提取我们需要的部分

for i in range(1,11):   # 循环爬取每页数据  (这里爬取1~10页)soup=get_content(i)#名称name=soup.find_all('p',class_="t1") # 用 find_all 方法搜索所有 class为t1 的 p 对象for n in name:Name.append(n.get_text())  # 提取文本度追加到 Name 列表中###  以下代码注释类似 #######company=soup.find_all('span',class_="t2")for i in company:Company.append(i.get_text())   location=soup.find_all('span',class_="t3")for i in location:Location.append(i.get_text())salary=soup.find_all('span',class_="t4")for i in salary:Salary.append(i.get_text())published=soup.find_all('span',class_="t5")for i in published:Published.append(i.get_text())for a in Name:Name1.append(a.strip()) # 提取 Name 中的职位名称
Name1.insert(0,'职位')     # Name1 列表中插入“职位” 以保证数据对应

岗位数据已经存储到相应的列表 中,下面把它存储到csv文件中
(这里用pandas来把数据写入csv文件)

import pandas as pd
# 将获取到的数据保存到 csv 文件
df=pd.DataFrame(list(zip(Name1,Company,Location,Salary,Published)))
outputfile='C:/Users/AQQWVFBUKN/Desktop/51job.csv'
df.to_csv(outputfile,index=False,encoding='utf_8_sig',header=False)

存储到csv后:
在这里插入图片描述

######### 以下附上完整代码

#-*-coding:utf-8-*-
from bs4 import BeautifulSoup
import requests
import chardet
from lxml import etreedef get_content(page): #   获取每页全部 html信息       # 爬取的页面 urlurl='https://search.51job.com/list/080200,000000,0000,00,9,99,Python,2,'+str(page)+'.html?lang=c&stype=1&postchannel\=0000&workyear=99&cotype=99&degreefrom=99&jobterm=99&companysize=99&lonlat=0%2C0&radius=-1&ord_field=0&confirmdate=9&fromType=&dibiaoid=0&address=&line=&specialarea=00&from=&welfare='# 设置代理信息headers={'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3626.109 Safari/537.36'}rqg=requests.get(url,headers=headers)# 字符转码rqg.encoding=chardet.detect(rqg.content)['encoding']   rqg.encoding="iso-8859-1"html=rqg.content.decode('iso-8859-1').encode('iso-8859-1')soup=BeautifulSoup(html,'lxml')soup.prettify()  #格式化soup对象return soupName=[]    # 初步存储职位名称信息(有 \n\n 的)
Name1=[]    # 存储最终的职位名称
Company=[]  # 公司名称
Location=[] # 工作地点 
Salary=[]   # 薪资
Published=[]  # 发布时间
for i in range(1,11):   # 循环爬取每页数据 soup=get_content(i)#名称name=soup.find_all('p',class_="t1") # 用 find_all 方法搜索所有 class为t1 的 p 对象for n in name:Name.append(n.get_text())  # 提取文本度追加到 Name 列表中###  以下代码注释类似 #######company=soup.find_all('span',class_="t2")for i in company:Company.append(i.get_text())   location=soup.find_all('span',class_="t3")for i in location:Location.append(i.get_text())salary=soup.find_all('span',class_="t4")for i in salary:Salary.append(i.get_text())published=soup.find_all('span',class_="t5")for i in published:Published.append(i.get_text())for a in Name:Name1.append(a.strip()) # 提取 Name 中的职位名称
Name1.insert(0,'职位')     # Name1 列表中插入“职位” 以保证数据对应Name=[]    # 初步存储职位名称信息(有 \n\n 的)
Name1=[]    # 存储最终的职位名称
Company=[]  # 公司名称
Location=[] # 工作地点 
Salary=[]   # 薪资
Published=[]  # 发布时间
for i in range(1,11):   # 循环爬取每页数据 soup=get_content(i)#名称name=soup.find_all('p',class_="t1") # 用 find_all 方法搜索所有 class为t1 的 p 对象for n in name:Name.append(n.get_text())  # 提取文本度追加到 Name 列表中###  以下代码注释类似 #######company=soup.find_all('span',class_="t2")for i in company:Company.append(i.get_text())   location=soup.find_all('span',class_="t3")for i in location:Location.append(i.get_text())salary=soup.find_all('span',class_="t4")for i in salary:Salary.append(i.get_text())published=soup.find_all('span',class_="t5")for i in published:Published.append(i.get_text())for a in Name:Name1.append(a.strip()) # 提取 Name 中的职位名称
Name1.insert(0,'职位')     # Name1 列表中插入“职位” 以保证数据对应import pandas as pd
# 将获取到的数据保存到 csv 文件
df=pd.DataFrame(list(zip(Name1,Company,Location,Salary,Published)))
outputfile='C:/Users/AQQWVFBUKN/Desktop/51job.csv'
df.to_csv(outputfile,index=False,encoding='utf_8_sig',header=False) 

这篇关于爬虫——Python 爬取51job 职位信息的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/588034

相关文章

Python实现终端清屏的几种方式详解

《Python实现终端清屏的几种方式详解》在使用Python进行终端交互式编程时,我们经常需要清空当前终端屏幕的内容,本文为大家整理了几种常见的实现方法,有需要的小伙伴可以参考下... 目录方法一:使用 `os` 模块调用系统命令方法二:使用 `subprocess` 模块执行命令方法三:打印多个换行符模拟

Python实现MQTT通信的示例代码

《Python实现MQTT通信的示例代码》本文主要介绍了Python实现MQTT通信的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 安装paho-mqtt库‌2. 搭建MQTT代理服务器(Broker)‌‌3. pytho

基于Python开发一个图像水印批量添加工具

《基于Python开发一个图像水印批量添加工具》在当今数字化内容爆炸式增长的时代,图像版权保护已成为创作者和企业的核心需求,本方案将详细介绍一个基于PythonPIL库的工业级图像水印解决方案,有需要... 目录一、系统架构设计1.1 整体处理流程1.2 类结构设计(扩展版本)二、核心算法深入解析2.1 自

从入门到进阶讲解Python自动化Playwright实战指南

《从入门到进阶讲解Python自动化Playwright实战指南》Playwright是针对Python语言的纯自动化工具,它可以通过单个API自动执行Chromium,Firefox和WebKit... 目录Playwright 简介核心优势安装步骤观点与案例结合Playwright 核心功能从零开始学习

Python 字典 (Dictionary)使用详解

《Python字典(Dictionary)使用详解》字典是python中最重要,最常用的数据结构之一,它提供了高效的键值对存储和查找能力,:本文主要介绍Python字典(Dictionary)... 目录字典1.基本特性2.创建字典3.访问元素4.修改字典5.删除元素6.字典遍历7.字典的高级特性默认字典

Python自动化批量重命名与整理文件系统

《Python自动化批量重命名与整理文件系统》这篇文章主要为大家详细介绍了如何使用Python实现一个强大的文件批量重命名与整理工具,帮助开发者自动化这一繁琐过程,有需要的小伙伴可以了解下... 目录简介环境准备项目功能概述代码详细解析1. 导入必要的库2. 配置参数设置3. 创建日志系统4. 安全文件名处

使用Python构建一个高效的日志处理系统

《使用Python构建一个高效的日志处理系统》这篇文章主要为大家详细讲解了如何使用Python开发一个专业的日志分析工具,能够自动化处理、分析和可视化各类日志文件,大幅提升运维效率,需要的可以了解下... 目录环境准备工具功能概述完整代码实现代码深度解析1. 类设计与初始化2. 日志解析核心逻辑3. 文件处

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

一文详解如何使用Java获取PDF页面信息

《一文详解如何使用Java获取PDF页面信息》了解PDF页面属性是我们在处理文档、内容提取、打印设置或页面重组等任务时不可或缺的一环,下面我们就来看看如何使用Java语言获取这些信息吧... 目录引言一、安装和引入PDF处理库引入依赖二、获取 PDF 页数三、获取页面尺寸(宽高)四、获取页面旋转角度五、判断

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定