爬虫——Python 爬取51job 职位信息

2024-01-09 18:30

本文主要是介绍爬虫——Python 爬取51job 职位信息,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

既然要爬取职位信息,那么首先要弄清楚目标页面的分布规律。
在这里插入图片描述

输入职位关键词和相应的地点等条件,然后搜索就可以看到岗位信息。

首先通过翻页来查看url的变化,以此来找到翻页时url的规律

把前面几页的url 复制下来放到文本文档里对比
在这里插入图片描述

不难发现除了页码外其他都没有改变

下面开始代码

# 导入相应的包
#-*-coding:utf-8-*-
from bs4 import BeautifulSoup
import requests
import chardet
from lxml import etree

编写一个函数来获取每页的 html 信息

def get_content(page): #   获取每页全部 html信息       # 爬取的页面 urlurl='https://search.51job.com/list/080200,000000,0000,00,9,99,Python,2,'+str(page)+'.html?lang=c&stype=1&postchannel\=0000&workyear=99&cotype=99&degreefrom=99&jobterm=99&companysize=99&lonlat=0%2C0&radius=-1&ord_field=0&confirmdate=9&fromType=&dibiaoid=0&address=&line=&specialarea=00&from=&welfare='# 设置代理信息headers={'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3626.109 Safari/537.36'}# requests 获取页面信息rqg=requests.get(url,headers=headers)# 字符转码rqg.encoding=chardet.detect(rqg.content)['encoding']   rqg.encoding="iso-8859-1"html=rqg.content.decode('iso-8859-1').encode('iso-8859-1')soup=BeautifulSoup(html,'lxml')soup.prettify()  #格式化soup对象return soup # 返回soup对象

接下来设置列表以存储相应的数据

Name=[]    # 初步存储职位名称信息(有 \n\n 的)
Name1=[]    # 存储最终的职位名称
Company=[]  # 公司名称
Location=[] # 工作地点 
Salary=[]   # 薪资
Published=[]  # 发布时间

从每页数据中提取我们需要的部分

for i in range(1,11):   # 循环爬取每页数据  (这里爬取1~10页)soup=get_content(i)#名称name=soup.find_all('p',class_="t1") # 用 find_all 方法搜索所有 class为t1 的 p 对象for n in name:Name.append(n.get_text())  # 提取文本度追加到 Name 列表中###  以下代码注释类似 #######company=soup.find_all('span',class_="t2")for i in company:Company.append(i.get_text())   location=soup.find_all('span',class_="t3")for i in location:Location.append(i.get_text())salary=soup.find_all('span',class_="t4")for i in salary:Salary.append(i.get_text())published=soup.find_all('span',class_="t5")for i in published:Published.append(i.get_text())for a in Name:Name1.append(a.strip()) # 提取 Name 中的职位名称
Name1.insert(0,'职位')     # Name1 列表中插入“职位” 以保证数据对应

岗位数据已经存储到相应的列表 中,下面把它存储到csv文件中
(这里用pandas来把数据写入csv文件)

import pandas as pd
# 将获取到的数据保存到 csv 文件
df=pd.DataFrame(list(zip(Name1,Company,Location,Salary,Published)))
outputfile='C:/Users/AQQWVFBUKN/Desktop/51job.csv'
df.to_csv(outputfile,index=False,encoding='utf_8_sig',header=False)

存储到csv后:
在这里插入图片描述

######### 以下附上完整代码

#-*-coding:utf-8-*-
from bs4 import BeautifulSoup
import requests
import chardet
from lxml import etreedef get_content(page): #   获取每页全部 html信息       # 爬取的页面 urlurl='https://search.51job.com/list/080200,000000,0000,00,9,99,Python,2,'+str(page)+'.html?lang=c&stype=1&postchannel\=0000&workyear=99&cotype=99&degreefrom=99&jobterm=99&companysize=99&lonlat=0%2C0&radius=-1&ord_field=0&confirmdate=9&fromType=&dibiaoid=0&address=&line=&specialarea=00&from=&welfare='# 设置代理信息headers={'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3626.109 Safari/537.36'}rqg=requests.get(url,headers=headers)# 字符转码rqg.encoding=chardet.detect(rqg.content)['encoding']   rqg.encoding="iso-8859-1"html=rqg.content.decode('iso-8859-1').encode('iso-8859-1')soup=BeautifulSoup(html,'lxml')soup.prettify()  #格式化soup对象return soupName=[]    # 初步存储职位名称信息(有 \n\n 的)
Name1=[]    # 存储最终的职位名称
Company=[]  # 公司名称
Location=[] # 工作地点 
Salary=[]   # 薪资
Published=[]  # 发布时间
for i in range(1,11):   # 循环爬取每页数据 soup=get_content(i)#名称name=soup.find_all('p',class_="t1") # 用 find_all 方法搜索所有 class为t1 的 p 对象for n in name:Name.append(n.get_text())  # 提取文本度追加到 Name 列表中###  以下代码注释类似 #######company=soup.find_all('span',class_="t2")for i in company:Company.append(i.get_text())   location=soup.find_all('span',class_="t3")for i in location:Location.append(i.get_text())salary=soup.find_all('span',class_="t4")for i in salary:Salary.append(i.get_text())published=soup.find_all('span',class_="t5")for i in published:Published.append(i.get_text())for a in Name:Name1.append(a.strip()) # 提取 Name 中的职位名称
Name1.insert(0,'职位')     # Name1 列表中插入“职位” 以保证数据对应Name=[]    # 初步存储职位名称信息(有 \n\n 的)
Name1=[]    # 存储最终的职位名称
Company=[]  # 公司名称
Location=[] # 工作地点 
Salary=[]   # 薪资
Published=[]  # 发布时间
for i in range(1,11):   # 循环爬取每页数据 soup=get_content(i)#名称name=soup.find_all('p',class_="t1") # 用 find_all 方法搜索所有 class为t1 的 p 对象for n in name:Name.append(n.get_text())  # 提取文本度追加到 Name 列表中###  以下代码注释类似 #######company=soup.find_all('span',class_="t2")for i in company:Company.append(i.get_text())   location=soup.find_all('span',class_="t3")for i in location:Location.append(i.get_text())salary=soup.find_all('span',class_="t4")for i in salary:Salary.append(i.get_text())published=soup.find_all('span',class_="t5")for i in published:Published.append(i.get_text())for a in Name:Name1.append(a.strip()) # 提取 Name 中的职位名称
Name1.insert(0,'职位')     # Name1 列表中插入“职位” 以保证数据对应import pandas as pd
# 将获取到的数据保存到 csv 文件
df=pd.DataFrame(list(zip(Name1,Company,Location,Salary,Published)))
outputfile='C:/Users/AQQWVFBUKN/Desktop/51job.csv'
df.to_csv(outputfile,index=False,encoding='utf_8_sig',header=False) 

这篇关于爬虫——Python 爬取51job 职位信息的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/588034

相关文章

python安装whl包并解决依赖关系的实现

《python安装whl包并解决依赖关系的实现》本文主要介绍了python安装whl包并解决依赖关系的实现,文中通过图文示例介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录一、什么是whl文件?二、我们为什么需要使用whl文件来安装python库?三、我们应该去哪儿下

Python脚本实现图片文件批量命名

《Python脚本实现图片文件批量命名》这篇文章主要为大家详细介绍了一个用python第三方库pillow写的批量处理图片命名的脚本,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言源码批量处理图片尺寸脚本源码GUI界面源码打包成.exe可执行文件前言本文介绍一个用python第三方库pi

Python中多线程和多进程的基本用法详解

《Python中多线程和多进程的基本用法详解》这篇文章介绍了Python中多线程和多进程的相关知识,包括并发编程的优势,多线程和多进程的概念、适用场景、示例代码,线程池和进程池的使用,以及如何选择合适... 目录引言一、并发编程的主要优势二、python的多线程(Threading)1. 什么是多线程?2.

Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)

《Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)》本文介绍了如何使用Python和Selenium结合ddddocr库实现图片验证码的识别和点击功能,感兴趣的朋友一起看... 目录1.获取图片2.目标识别3.背景坐标识别3.1 ddddocr3.2 打码平台4.坐标点击5.图

Python自动化Office文档处理全攻略

《Python自动化Office文档处理全攻略》在日常办公中,处理Word、Excel和PDF等Office文档是再常见不过的任务,手动操作这些文档不仅耗时耗力,还容易出错,幸运的是,Python提供... 目录一、自动化处理Word文档1. 安装python-docx库2. 读取Word文档内容3. 修改

Python重命名文件并移动到对应文件夹

《Python重命名文件并移动到对应文件夹》在日常的文件管理和处理过程中,我们可能会遇到需要将文件整理到不同文件夹中的需求,下面我们就来看看如何使用Python实现重命名文件并移动到对应文件夹吧... 目录检查并删除空文件夹1. 基本需求2. 实现代码解析3. 代码解释4. 代码执行结果5. 总结方法补充在

Python自动化办公之合并多个Excel

《Python自动化办公之合并多个Excel》在日常的办公自动化工作中,尤其是处理大量数据时,合并多个Excel表格是一个常见且繁琐的任务,下面小编就来为大家介绍一下如何使用Python轻松实现合... 目录为什么选择 python 自动化目标使用 Python 合并多个 Excel 文件安装所需库示例代码

Python使用Pandas对比两列数据取最大值的五种方法

《Python使用Pandas对比两列数据取最大值的五种方法》本文主要介绍使用Pandas对比两列数据取最大值的五种方法,包括使用max方法、apply方法结合lambda函数、函数、clip方法、w... 目录引言一、使用max方法二、使用apply方法结合lambda函数三、使用np.maximum函数

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何