无失真编码之霍夫曼编码的python实现——数字图像处理

2024-01-09 09:04

本文主要是介绍无失真编码之霍夫曼编码的python实现——数字图像处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原理

无失真编码是一种数据压缩技术,其中原始数据在压缩后可以完全无损地恢复。霍夫曼编码是一种广泛使用的无失真编码方法。它基于字符出现的频率构建一个最优的前缀编码树,其中没有任何编码是另一个编码的前缀。这样,即使在压缩后,原始数据也可以完全无误地被解码和恢复。霍夫曼编码的原理可以分为以下几个步骤:

1. 统计字符频率
首先,统计待编码数据中每个字符的出现频率。这个频率信息是构建霍夫曼树的基础。

2. 构建霍夫曼树
霍夫曼树的构建过程如下:
为数据中的每个不同字符创建一个叶子节点,并将其频率作为节点的权重。
将所有节点按照频率(权重)排序,放入一个优先队列(如最小堆)中。
当队列中有多于一个节点时,执行以下操作:
从队列中移除两个频率最低的节点。
创建一个新的内部节点,其频率是这两个节点频率之和。
将这两个节点作为新节点的子节点,一个为左子节点,一个为右子节点。
将新节点重新加入队列。
这个过程重复进行,直至队列中只剩下一个节点,这个节点成为霍夫曼树的根节点。

3. 生成霍夫曼编码
对霍夫曼树进行遍历(例如深度优先遍历),为每个叶子节点分配一个二进制编码。从根到叶子的每条路径定义了相应字符的编码。一般约定,向左的路径代表’0’,向右的路径代表’1’。

4. 编码数据
根据霍夫曼树得到的编码,替换原始数据中的每个字符,完成数据的编码过程。

解码数据
由于霍夫曼编码是前缀编码,任何编码都不是另一个编码的前缀,因此可以无误地从编码数据中恢复原始数据。

优点
霍夫曼编码的主要优点在于其根据字符出现的频率生成编码,使得频率高的字符具有较短的编码,频率低的字符具有较长的编码。这种方法通常能生成接近最优的无失真压缩率。

应用
霍夫曼编码在文件压缩(如 ZIP 文件格式)和多媒体数据压缩(如 JPEG 和 MP3)中得到了广泛应用。由于其无失真的特性,它在需要完整恢复原始数据的场景中非常有用。

代码要求实现下图

在这里插入图片描述

提示

结果显示了图像中灰度值经过霍夫曼编码后的码表,如灰度值128被编码为长度为1的码字“0”,灰度值87被编码为长度为2的码字“10”等。注意:霍夫曼编码所构造的码表不是唯一的,你的实验结果可能和上图所示不同。
第一步,读入图像并计算其直方图,统计其各灰度值出现的概率(次数)。注意,统计直方图所用函数为hist = cv2.calcHist([img], [0], None, [256], [0, 256])。
第二步,针对各灰度值出现的概率大小进行排序、合并(信源化简),此过程构造出一颗霍夫曼树,可以使用python中queue模块中的PriorityQueue数据结构编写代码。
第三步,根据上一步得到的霍夫曼树进行逆向编码,得到每一个灰度值对应的码字。这一步可以从根节点出发,通过不断给其子节点添加1比特码字的嵌套迭代过程实现。

python代码

import cv2
import numpy as np
from queue import PriorityQueuedef huffman_tree_to_table(root, prefix, table):if type(root[1]) != tuple:table[root[1]] = prefixelse:huffman_tree_to_table(root[1][0], prefix+'0', table)huffman_tree_to_table(root[1][1], prefix+'1', table)return tableimg = cv2.imread('Fig0801.tif', 0)
hist = cv2.calcHist([img], [0], None, [256], [0, 256])
gray_value = np.flatnonzero(hist)queue_ = PriorityQueue()
for value in gray_value:queue_.put((hist[value], value))while queue_.qsize() > 1:node1 = queue_.get()node2 = queue_.get()new_count = node1[0] + node2[0]queue_.put((new_count, (node1, node2)))root = queue_.get()
table = huffman_tree_to_table(root, '', {})print(table)

结果展示

在这里插入图片描述

这篇关于无失真编码之霍夫曼编码的python实现——数字图像处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/586597

相关文章

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

在不同系统间迁移Python程序的方法与教程

《在不同系统间迁移Python程序的方法与教程》本文介绍了几种将Windows上编写的Python程序迁移到Linux服务器上的方法,包括使用虚拟环境和依赖冻结、容器化技术(如Docker)、使用An... 目录使用虚拟环境和依赖冻结1. 创建虚拟环境2. 冻结依赖使用容器化技术(如 docker)1. 创

java父子线程之间实现共享传递数据

《java父子线程之间实现共享传递数据》本文介绍了Java中父子线程间共享传递数据的几种方法,包括ThreadLocal变量、并发集合和内存队列或消息队列,并提醒注意并发安全问题... 目录通过 ThreadLocal 变量共享数据通过并发集合共享数据通过内存队列或消息队列共享数据注意并发安全问题总结在 J

SpringBoot+MyBatis-Flex配置ProxySQL的实现步骤

《SpringBoot+MyBatis-Flex配置ProxySQL的实现步骤》本文主要介绍了SpringBoot+MyBatis-Flex配置ProxySQL的实现步骤,文中通过示例代码介绍的非常详... 目录 目标 步骤 1:确保 ProxySQL 和 mysql 主从同步已正确配置ProxySQL 的

JS 实现复制到剪贴板的几种方式小结

《JS实现复制到剪贴板的几种方式小结》本文主要介绍了JS实现复制到剪贴板的几种方式小结,包括ClipboardAPI和document.execCommand这两种方法,具有一定的参考价值,感兴趣的... 目录一、Clipboard API相关属性方法二、document.execCommand优点:缺点: