无失真编码之霍夫曼编码的python实现——数字图像处理

2024-01-09 09:04

本文主要是介绍无失真编码之霍夫曼编码的python实现——数字图像处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原理

无失真编码是一种数据压缩技术,其中原始数据在压缩后可以完全无损地恢复。霍夫曼编码是一种广泛使用的无失真编码方法。它基于字符出现的频率构建一个最优的前缀编码树,其中没有任何编码是另一个编码的前缀。这样,即使在压缩后,原始数据也可以完全无误地被解码和恢复。霍夫曼编码的原理可以分为以下几个步骤:

1. 统计字符频率
首先,统计待编码数据中每个字符的出现频率。这个频率信息是构建霍夫曼树的基础。

2. 构建霍夫曼树
霍夫曼树的构建过程如下:
为数据中的每个不同字符创建一个叶子节点,并将其频率作为节点的权重。
将所有节点按照频率(权重)排序,放入一个优先队列(如最小堆)中。
当队列中有多于一个节点时,执行以下操作:
从队列中移除两个频率最低的节点。
创建一个新的内部节点,其频率是这两个节点频率之和。
将这两个节点作为新节点的子节点,一个为左子节点,一个为右子节点。
将新节点重新加入队列。
这个过程重复进行,直至队列中只剩下一个节点,这个节点成为霍夫曼树的根节点。

3. 生成霍夫曼编码
对霍夫曼树进行遍历(例如深度优先遍历),为每个叶子节点分配一个二进制编码。从根到叶子的每条路径定义了相应字符的编码。一般约定,向左的路径代表’0’,向右的路径代表’1’。

4. 编码数据
根据霍夫曼树得到的编码,替换原始数据中的每个字符,完成数据的编码过程。

解码数据
由于霍夫曼编码是前缀编码,任何编码都不是另一个编码的前缀,因此可以无误地从编码数据中恢复原始数据。

优点
霍夫曼编码的主要优点在于其根据字符出现的频率生成编码,使得频率高的字符具有较短的编码,频率低的字符具有较长的编码。这种方法通常能生成接近最优的无失真压缩率。

应用
霍夫曼编码在文件压缩(如 ZIP 文件格式)和多媒体数据压缩(如 JPEG 和 MP3)中得到了广泛应用。由于其无失真的特性,它在需要完整恢复原始数据的场景中非常有用。

代码要求实现下图

在这里插入图片描述

提示

结果显示了图像中灰度值经过霍夫曼编码后的码表,如灰度值128被编码为长度为1的码字“0”,灰度值87被编码为长度为2的码字“10”等。注意:霍夫曼编码所构造的码表不是唯一的,你的实验结果可能和上图所示不同。
第一步,读入图像并计算其直方图,统计其各灰度值出现的概率(次数)。注意,统计直方图所用函数为hist = cv2.calcHist([img], [0], None, [256], [0, 256])。
第二步,针对各灰度值出现的概率大小进行排序、合并(信源化简),此过程构造出一颗霍夫曼树,可以使用python中queue模块中的PriorityQueue数据结构编写代码。
第三步,根据上一步得到的霍夫曼树进行逆向编码,得到每一个灰度值对应的码字。这一步可以从根节点出发,通过不断给其子节点添加1比特码字的嵌套迭代过程实现。

python代码

import cv2
import numpy as np
from queue import PriorityQueuedef huffman_tree_to_table(root, prefix, table):if type(root[1]) != tuple:table[root[1]] = prefixelse:huffman_tree_to_table(root[1][0], prefix+'0', table)huffman_tree_to_table(root[1][1], prefix+'1', table)return tableimg = cv2.imread('Fig0801.tif', 0)
hist = cv2.calcHist([img], [0], None, [256], [0, 256])
gray_value = np.flatnonzero(hist)queue_ = PriorityQueue()
for value in gray_value:queue_.put((hist[value], value))while queue_.qsize() > 1:node1 = queue_.get()node2 = queue_.get()new_count = node1[0] + node2[0]queue_.put((new_count, (node1, node2)))root = queue_.get()
table = huffman_tree_to_table(root, '', {})print(table)

结果展示

在这里插入图片描述

这篇关于无失真编码之霍夫曼编码的python实现——数字图像处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/586597

相关文章

pandas中位数填充空值的实现示例

《pandas中位数填充空值的实现示例》中位数填充是一种简单而有效的方法,用于填充数据集中缺失的值,本文就来介绍一下pandas中位数填充空值的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是中位数填充?为什么选择中位数填充?示例数据结果分析完整代码总结在数据分析和机器学习过程中,处理缺失数

Golang HashMap实现原理解析

《GolangHashMap实现原理解析》HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持高效的插入、查找和删除操作,:本文主要介绍GolangH... 目录HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持

Pandas使用AdaBoost进行分类的实现

《Pandas使用AdaBoost进行分类的实现》Pandas和AdaBoost分类算法,可以高效地进行数据预处理和分类任务,本文主要介绍了Pandas使用AdaBoost进行分类的实现,具有一定的参... 目录什么是 AdaBoost?使用 AdaBoost 的步骤安装必要的库步骤一:数据准备步骤二:模型

使用Pandas进行均值填充的实现

《使用Pandas进行均值填充的实现》缺失数据(NaN值)是一个常见的问题,我们可以通过多种方法来处理缺失数据,其中一种常用的方法是均值填充,本文主要介绍了使用Pandas进行均值填充的实现,感兴趣的... 目录什么是均值填充?为什么选择均值填充?均值填充的步骤实际代码示例总结在数据分析和处理过程中,缺失数

Java对象转换的实现方式汇总

《Java对象转换的实现方式汇总》:本文主要介绍Java对象转换的多种实现方式,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java对象转换的多种实现方式1. 手动映射(Manual Mapping)2. Builder模式3. 工具类辅助映

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Go语言开发实现查询IP信息的MCP服务器

《Go语言开发实现查询IP信息的MCP服务器》随着MCP的快速普及和广泛应用,MCP服务器也层出不穷,本文将详细介绍如何在Go语言中使用go-mcp库来开发一个查询IP信息的MCP... 目录前言mcp-ip-geo 服务器目录结构说明查询 IP 信息功能实现工具实现工具管理查询单个 IP 信息工具的实现服

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾