深入浅出理解Dilated Convolution(空洞卷积,膨胀卷积)

2024-01-08 17:28

本文主要是介绍深入浅出理解Dilated Convolution(空洞卷积,膨胀卷积),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

温故而知新,可以为师矣!

一、参考资料

github仓库:Multi-Scale Context Aggregation by Dilated Convolutions
图片素材来源:Convolution arithmetic
理解Dilation convolution
Dilated Convolution —— 空洞卷积(膨胀卷积)
膨胀卷积学习笔记

二、空洞卷积(Dilated Convolution)相关介绍

1. 引言

1.1 增大感受野

用CNN进行图像处理时,通常需要经过多次卷积和pooling操作,pooling操作可以减少图像的尺寸,再使用卷积核可以增大感受野;多个卷积核堆叠也可以增大感受野。但是,在图像分割任务中,例如FCN[3],由于图像分割预测是 pixel-wise 的输出,所以要将pooling操作后较小尺寸的 feature map 通过 upsampling 的方法(如Conv2DTranspose转置卷积)恢复到原始图像尺寸,再进行预测。如下图所示:
在这里插入图片描述

因此,图像分割FCN中有两个关键,一个是pooling操作减小图像尺寸增大感受野,另一个是 upsampling 扩大图像尺寸。在先减小再增大尺寸的过程中,导致一些细节信息的损失。那么能不能设计一种新的操作,不通过pooling操作也能有较大的感受野看到更多的信息呢?答案就是Dilated Convolution

1.2 up-samplingpooling layer 存在的问题

图像分割任务中,较为著名的是 up-samplingpooling layer 的设计,但这些设计存在一些致命性的缺陷,主要问题有:

  • 参数不可学习:Up-sampling / pooling layer (e.g. bilinear interpolation) is deterministic。
  • 内部数据结构丢失;空间层级化信息丢失。
  • 小物体信息无法重建:如果一个物体占4x4的像素,则经过4次pooling操作之后,物体的信息就无法重构了。换句话说,假设有4个pooling layer,则任何小于 2 4 = 16 p i x e l 2^4=16 pixel 24=16pixel 的物体信息将理论上无法重建。
  • pooling操作是不可逆转的,通过对 feature map 进行 upsampling 还原图像尺寸时丢失信息。

在这样问题的存在下,图像分割问题一直处在瓶颈期无法再明显提高精度, 而 Dilated Convolution 的设计很好的避免了这些问题。

2. Dilated Convolution的概念

Dilated Convolution,中文叫做空洞卷积或者膨胀卷积,在卷积的过程中增加一些空洞。如下图所示,三个卷积核尺寸都是3x3。
在这里插入图片描述

(a)图中的卷积为标准卷积,即 dilation rate=1,此时这个卷积核的感受野大小为3x3。
(b)图中采用 Dilated Convolutiondilation rate=2,即卷积的空洞为1。此时每个卷积操作的点的感受野为3x3,整个卷积核的感受野为7x7。
(c)图中采用Dilated Convolutiondilation rate=4,即卷积的空洞为3。此时每个卷积操作的点的感受野为7x7,整个卷积核的感受野为15x15。

3. dilation rate

Dilated Convolution是在标准卷积Convolution map的基础上注入空洞,以此来增加感受野(reception field)。因此,Dilated Convolution在标准卷积的基础上多了一个超参数(hyper-parameter)称之为膨胀率(dilation rate),表示卷积核的间隔

如下图所示,Dilated Convolution与标准卷积采用的都是3x3卷积核,标准卷积的 dilation rate 为1,Dilated Convolutiondilation rate 为2。
在这里插入图片描述

标准卷积的 dilation rate=1,如下图所示:
在这里插入图片描述

Dilated Convolutiondilation rate=2,如下图所示:
在这里插入图片描述

4. Dilated Convolution 的作用

Dilated Convolution 代替了传统的 max-poolingstrided convolution,能够增大感受野,并保持 feature map 的尺寸和原始图片大小。

Dilated Convolution 的好处是不做pooling损失信息的情况下,加大了感受野,让每个卷积输出都包含较大范围的信息。在图像需要全局信息或者语音文本需要较长的sequence信息依赖的问题中,都能很好的应用 Dilated Convolution,比如图像分割[3]、语音合成WaveNet[2]、机器翻译ByteNet[1]中。

5. Conv2DTransposeDilated Convolution的区别

Conv2DTranspose 其中的一个用途是做upsampling,即增大图像尺寸。而 Dilated Convolution 并不是做upsampling,而是增大感受野。

Dilated Convolution 不是在像素之间padding空白的像素,而是在已有的像素上,skip掉一些像素,或者输入不变,对conv的kernel参数中插一些0的weight,达到一次卷积看到的空间范围变大的目的。

当然将标准卷积的 stride 步长设为大于1,也会达到增大感受野的效果,但是 stride 大于1就会导致 downsampling,图像尺寸变小。

6. Dilated Convolution存在的问题

  • 栅格效应(The Gridding Effect)

    如果我们叠加多个相同的Dilated Convolution,会发现感受野中有很多像素没有利用上,出现大量空洞。此时,会丢失数据之间的连续性和完整性,不利于学习。如下图所示,展示了连续进行3次相同Dilated Convolution的效果(卷积核大小为3x3,dilation rate=2)。
    在这里插入图片描述

  • Long-ranged information might be not relevant

    Dilated Convolution 的设计是为了获取 long-range-information,有些长距离信息和当前点是完全不相关的,会影响数据的一致性。并且,仅采用大的 dilation rate 的信息,可能对大物体有较好的分割效果,而对小物体可能有弊无利。如何同时处理好大物体和小物体的关系,则是设计好Dilated Convolution网络的关键。

7. 混合膨胀卷积 (HDC)

混合膨胀卷积 (Hybrid Dilated Convolution,HDC)。

  1. 不同的卷积层使用不同的 dilation rate。对于一组Dilated Convolution,设置不同的 dilation rate,且dilation rate逐渐增大。例如,3个卷积核可以分别设置 dilation rate 为 [1, 2, 4]。这样最后一层有比较大的感受野,同时不会丢失大量的局部信息。如下图所示:
    在这里插入图片描述

  2. 使多个Dilated Convolution后的感受野内不存在空洞。假设有n个膨胀卷积核,dilation rate 分别是 [r1, r2,…, rn]。如果 [r1, r2,…, rn] 能使下式成立,则说明感受野不会存在空洞。
    在这里插入图片描述
    ​ 上式中的 M i M_i Mi 指的是第 i 层可以使用的最大的 dilation rate,K是卷积核尺寸。

三、相关经验

1. GrabAR

GrabAR: Occlusion-aware Grabbing Virtual Objects in AR
附件:Supplementary material, A. GrabAR-Net architecture details

四、参考文献

[1] Kalchbrenner N, Espeholt L, Simonyan K, et al. Neural machine translation in linear time[J]. arxiv preprint arxiv:1610.10099, 2016.
[2] Oord A, Dieleman S, Zen H, et al. Wavenet: A generative model for raw audio[J]. arxiv preprint arxiv:1609.03499, 2016.
[3] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 3431-3440.
[4] Yu F, Koltun V. Multi-scale context aggregation by dilated convolutions[J]. arXiv preprint arXiv:1511.07122, 2015.

这篇关于深入浅出理解Dilated Convolution(空洞卷积,膨胀卷积)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/584244

相关文章

一文带你理解Python中import机制与importlib的妙用

《一文带你理解Python中import机制与importlib的妙用》在Python编程的世界里,import语句是开发者最常用的工具之一,它就像一把钥匙,打开了通往各种功能和库的大门,下面就跟随小... 目录一、python import机制概述1.1 import语句的基本用法1.2 模块缓存机制1.

深入理解C语言的void*

《深入理解C语言的void*》本文主要介绍了C语言的void*,包括它的任意性、编译器对void*的类型检查以及需要显式类型转换的规则,具有一定的参考价值,感兴趣的可以了解一下... 目录一、void* 的类型任意性二、编译器对 void* 的类型检查三、需要显式类型转换占用的字节四、总结一、void* 的

深入理解Redis大key的危害及解决方案

《深入理解Redis大key的危害及解决方案》本文主要介绍了深入理解Redis大key的危害及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一、背景二、什么是大key三、大key评价标准四、大key 产生的原因与场景五、大key影响与危

深入理解C++ 空类大小

《深入理解C++空类大小》本文主要介绍了C++空类大小,规定空类大小为1字节,主要是为了保证对象的唯一性和可区分性,满足数组元素地址连续的要求,下面就来了解一下... 目录1. 保证对象的唯一性和可区分性2. 满足数组元素地址连续的要求3. 与C++的对象模型和内存管理机制相适配查看类对象内存在C++中,规

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

【C++高阶】C++类型转换全攻略:深入理解并高效应用

📝个人主页🌹:Eternity._ ⏩收录专栏⏪:C++ “ 登神长阶 ” 🤡往期回顾🤡:C++ 智能指针 🌹🌹期待您的关注 🌹🌹 ❀C++的类型转换 📒1. C语言中的类型转换📚2. C++强制类型转换⛰️static_cast🌞reinterpret_cast⭐const_cast🍁dynamic_cast 📜3. C++强制类型转换的原因📝

深入理解RxJava:响应式编程的现代方式

在当今的软件开发世界中,异步编程和事件驱动的架构变得越来越重要。RxJava,作为响应式编程(Reactive Programming)的一个流行库,为Java和Android开发者提供了一种强大的方式来处理异步任务和事件流。本文将深入探讨RxJava的核心概念、优势以及如何在实际项目中应用它。 文章目录 💯 什么是RxJava?💯 响应式编程的优势💯 RxJava的核心概念

如何通俗理解注意力机制?

1、注意力机制(Attention Mechanism)是机器学习和深度学习中一种模拟人类注意力的方法,用于提高模型在处理大量信息时的效率和效果。通俗地理解,它就像是在一堆信息中找到最重要的部分,把注意力集中在这些关键点上,从而更好地完成任务。以下是几个简单的比喻来帮助理解注意力机制: 2、寻找重点:想象一下,你在阅读一篇文章的时候,有些段落特别重要,你会特别注意这些段落,反复阅读,而对其他部分

深入理解数据库的 4NF:多值依赖与消除数据异常

在数据库设计中, "范式" 是一个常常被提到的重要概念。许多初学者在学习数据库设计时,经常听到第一范式(1NF)、第二范式(2NF)、第三范式(3NF)以及 BCNF(Boyce-Codd范式)。这些范式都旨在通过消除数据冗余和异常来优化数据库结构。然而,当我们谈到 4NF(第四范式)时,事情变得更加复杂。本文将带你深入了解 多值依赖 和 4NF,帮助你在数据库设计中消除更高级别的异常。 什么是