R语言基础题及答案(四)——R语言与统计分析第四章课后习题(汤银才)

本文主要是介绍R语言基础题及答案(四)——R语言与统计分析第四章课后习题(汤银才),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

R语言与统计分析第四章课后习题(汤银才)

题-1

模拟得到1000个参数为0.3的贝努里分布随机数, 并用图示表示出来

# 为了更清晰显示密度,通过cex把点画小点
plot(rbinom(1000,1,0.3),cex=0.5)

在这里插入图片描述

题-2

用命令rnorm( )命令产生1000个均值为10, 方差为4的正态分布随机数,用直方图呈现数据的分布并添加核密度曲线.

rn<-rnorm(1000,mean=10,sd=2)
hist(rn,probability=T)
lines(density(rn),col="red",lwd=3)

在这里插入图片描述

题-3

模拟得到三个t分布混合而成的样本, 用直方图呈现数据的分布并添加核密度曲线.

x=c(rt(100,1),rt(100,2),rt(100,10))
hist(x,xlim=c(min(x),max(x)),probability=T,col='lightblue')
lines(density(x),col="#E54222",lwd=3)

在这里插入图片描述

题-4

由程序包DAAG中的数据集possum,

  1. 利用函数hist(possum$age)作出负鼠年龄的直方图. 试选用两种不同的 断点并作比较, 说明两图的不同之处;

  2. 求出负鼠年龄变量的均值、标准差、中位数以及上下四分位数.

# 数据导入和框划分
library('DAAG')
data(possum)
par(mfrow=c(2,2))# 不同断点直方图
hist(possum$age,breaks=1+(0:8)*1)
hist(possum$age,breaks=0+(1:9)*1)
hist(possum$age,breaks=1+(0:5)*2)
hist(possum$age,breaks=seq(from=0,to=10,by=0.9))# 均值、标准差、中位数以及上下四分位数
mean(possum$age,na.rm=TRUE)
sd(possum$age,na.rm=TRUE)
median(possum$age,na.rm=TRUE)
quantile(possum$age,na.rm=TRUE)

在这里插入图片描述

[1] 3.833
[1] 1.909
[1] 3
0% 25% 50% 75% 100%
1.00 2.25 3.00 5.00 9.00

题-5

考虑程序包DAAG中的数据集tinting,

  1. 获得变量tint和sex的列联表;

  2. 在同一图上作出变量sex与tint的联合柱状图;

  3. 作出age和it的散点图, 并进一步完成下面的操作:

    i. 用函数lowness()作出拟合线;

    ii. 在图的两边加上更细小的刻度;

    iii. 在图的两边加上箱型图.

  4. 作出age和it关于因子变量tint的条件散点图;

  5. 作出age和it关于因子变量tint和sex的条件散点图;

  6. 做出it与csoa的等高线图;

  7. 使用matplot( )描述变量age, it和csoa

# 数据导入
library('DAAG')
data(tinting)# 1-获得变量tint和sex的列联表
ts<-table(tinting$tint,tinting$sex)# 2-在同一图上作出变量sex与tint的联合柱状图
barplot(ts)
op <- par( )
layout(matrix(c(2,1,0,3), 2, 2, byrow=T ), c(1,6), c(2,1))
par(mar=c(1,1,5,2))
plot(tinting$age,tinting$it)
lines(lowess(tinting$age,tinting$it),lwd=3) # 拟合线
rug(side=1,jitter(tinting$age,3),lwd=0.5)   # 细小刻度-X轴
rug(side=2,jitter(tinting$it,3),lwd=0.5)    # 细小刻度-y轴par(mar=c(1,2,5,1))
boxplot(tinting$it,axes=FALSE)                 # 箱型图-y轴
par(mar=c(5,1,1,2))
boxplot(tinting$age,horizontal=T,axes=FALSE)   # 箱型图-X轴# 4-作出age和it关于因子变量tint的条件散点图
coplot(tinting$age~tinting$it|tinting$tint)# 5-作出age和it关于因子变量tint和sex的条件散点图
coplot(tinting$age~tinting$it|tinting$tint*tinting$sex)# 6-做出it与csoa的等高线图
library(MASS)
z<-kde2d(tinting$it,tinting$csoa)
contour(z,col="red",drawlabels=FALSE)# 7-使用matplot( )描述变量age, it和csoa
d<-data.frame(y1=tinting$age,y2=tinting$it,y3=tinting$csoa)    
matplot(d,type='l',main="matplot")

联合柱状图:
在这里插入图片描述
散点图:
在这里插入图片描述
条件散点图:
在这里插入图片描述
在这里插入图片描述
高线图图及matplot( )
在这里插入图片描述

题-6

> data(InsectSprays)

> InsectSprays

得到数据集InsectSprays, 根据数据作出有意义的图, 并对数据作出描述性统计.

data(InsectSprays)# 列联表
cs<-table(InsectSprays$count,InsectSprays$spray)  
barplot(cs)# 分类图
mys<-c(1,2,3,4,5,6)[InsectSprays$spray]           
plot(InsectSprays$count,col=mys,pch=mys)# 分类归纳
legend(x=40,y=26,legend=c("A","B","C","D","E","F"),col=c(1,2,3,4,5,6),pch=c(1,2,3,4,5,6))
c.s<-data.frame(A=InsectSprays$count[1:12],       B=InsectSprays$count[13:24],C=InsectSprays$count[25:36],D=InsectSprays$count[37:48],E=InsectSprays$count[49:60],F=InsectSprays$count[61:72])
summary(c.s)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

题-7

假定某校100名女生的血清总蛋白含量(g/L)服从均值为75, 标准差为3,并假定数据由下面的命令产生

> options(digits=4)

> rnorm(100,75,9)

根据产生的数据

  1. 计算样本均值、方差、标准差、极差、四分位极差、变异系数、偏度、峰度和五数概括;

  2. 画出直方图、核密度估计曲线、经验分布图和QQ图;

  3. 画出茎叶图、框须图.

options(digits=4)
db<- rnorm(100,75,sd=3)mean(db)        # 均值
var(db)         # 方差
sd(db)          # 标准差
max(db)-min(db) # 极差
mad(db)         # 四分位极值
sd(db)/mean(db) # 变异系数library(fBasics)
skewness(db)    # 偏度
kurtosis(db)    # 峰度
fivenum(db)     # 五数概括# 画出直方图、核密度估计曲线、经验分布图和QQ图
# 直方图、核密度估计曲线
hist(db,probability=T,breaks = 40:110)
lines(density(db),col='red',lwd=3)# QQ图
qqnorm(db,main="QQ图")
qqline(db,col='#95B3D7',lwd=3)# 经验分布图
x<-sort(db)
n<-length(x)
y<-(1:n)/n
m<-mean(db)
s<-sd(db)
plot(x,y,type='s',main="经验分布图")
curve(pnorm(x,m,s),col='red',lwd=2,add=T)# 画出茎叶图、框须图
stem(db)
boxplot(db,main="框须图",horizontal=T)

[1] 74.85
[1] 8.883
[1] 2.98
[1] 15.13
[1] 2.722
[1] 0.03982
[1] 0.1153
attr(,“method”)
[1] “moment”
[1] -0.2226
attr(,“method”)
[1] “excess”
[1] 68.24 73.05 74.94 76.68 83.37
.
The decimal point is at the |
.
68 | 22578
70 | 01145560357788
72 | 146800123356677889
74 | 00244556677790001111234556779
76 | 02244566679902336999
78 | 255801137
80 | 2271
82 | 4

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

题-8

某校测得20名学生的四项指标: 性别、年龄、身高(cm)和体重(kg), 具体数据如表4.1所示.
表 4.1: 学生身高与体重数据

学号性别年龄身高体重
01F1816654
02F1815558
03F1915450
04F1816047
05F2016246
06F1915348
07F2115650
08F2015249
09F2117057
10F2015652
11M1816861
12M1816655
13M1917263
14M1817868
15M2016959
16M1918065
17M2117759
18M2016856
19M2118269
20M2017061
  1. 绘制体重对身高的散点图;

  2. 绘制不同性别下, 体重对身高的散点图;

  3. 绘制不同年龄阶段, 体重对身高的散点图;

  4. 绘制不同性别和不同年龄阶段, 体重对身高的散点图.

library(RODBC)
info<-data.frame("序号"=1:20,"性别"=c(rep("F",10),rep("M",10)),"年龄"=c(18,18,19,18,20,19,21,20,21,20,18,18,19,18,20,19,21,20,21,20),"身高"=c(166,165,154,160,162,153,156,152,170,156,168,166,172,178,169,180,177,168,182,170),"体重"=c(54,58,50,47,46,48,50,49,57,52,61,55,63,68,59,65,59,56,69,61))
print(info)# 体重对身高散点图
plot(info$体重~info$身高,main="体重对身高散点图")# 绘制不同性别下, 体重对身高的散点图
coplot(info$体重~info$身高|info$性别)# 绘制不同年龄阶段, 体重对身高的散点图
coplot(info$体重~info$身高|info$年龄)# 绘制不同性别和不同年龄阶段, 体重对身高的散点图
coplot(info$体重~info$身高|info$性别*info$年龄) 

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

这篇关于R语言基础题及答案(四)——R语言与统计分析第四章课后习题(汤银才)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/583635

相关文章

使用SQL语言查询多个Excel表格的操作方法

《使用SQL语言查询多个Excel表格的操作方法》本文介绍了如何使用SQL语言查询多个Excel表格,通过将所有Excel表格放入一个.xlsx文件中,并使用pandas和pandasql库进行读取和... 目录如何用SQL语言查询多个Excel表格如何使用sql查询excel内容1. 简介2. 实现思路3

Go语言实现将中文转化为拼音功能

《Go语言实现将中文转化为拼音功能》这篇文章主要为大家详细介绍了Go语言中如何实现将中文转化为拼音功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 有这么一个需求:新用户入职 创建一系列账号比较麻烦,打算通过接口传入姓名进行初始化。想把姓名转化成拼音。因为有些账号即需要中文也需要英

Go语言使用Buffer实现高性能处理字节和字符

《Go语言使用Buffer实现高性能处理字节和字符》在Go中,bytes.Buffer是一个非常高效的类型,用于处理字节数据的读写操作,本文将详细介绍一下如何使用Buffer实现高性能处理字节和... 目录1. bytes.Buffer 的基本用法1.1. 创建和初始化 Buffer1.2. 使用 Writ

深入理解C语言的void*

《深入理解C语言的void*》本文主要介绍了C语言的void*,包括它的任意性、编译器对void*的类型检查以及需要显式类型转换的规则,具有一定的参考价值,感兴趣的可以了解一下... 目录一、void* 的类型任意性二、编译器对 void* 的类型检查三、需要显式类型转换占用的字节四、总结一、void* 的

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

C语言线程池的常见实现方式详解

《C语言线程池的常见实现方式详解》本文介绍了如何使用C语言实现一个基本的线程池,线程池的实现包括工作线程、任务队列、任务调度、线程池的初始化、任务添加、销毁等步骤,感兴趣的朋友跟随小编一起看看吧... 目录1. 线程池的基本结构2. 线程池的实现步骤3. 线程池的核心数据结构4. 线程池的详细实现4.1 初

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验