本文主要是介绍教你使用 MATLAB 绘制散点密度图(二维核密度),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
效果:
原理也很简单,通过matlab自带的ksdensity获得网格每一点密度,通过密度拟合曲面,再计算每个数据点对应的概率,并将概率映射到颜色即可
为了怕大家找不到函数这次工具函数放到最前面
1工具函数完整代码
function [CData,h,XMesh,YMesh,ZMesh,colorList]=density2C(X,Y,XList,YList,colorList)
[XMesh,YMesh]=meshgrid(XList,YList);
XYi=[XMesh(:) YMesh(:)];
F=ksdensity([X,Y],XYi);
ZMesh=zeros(size(XMesh));
ZMesh(1:length(F))=F;h=interp2(XMesh,YMesh,ZMesh,X,Y);
if nargin<5
colorList=[0.2700 0 0.33000.2700 0.2300 0.51000.1900 0.4100 0.56000.1200 0.5600 0.55000.2100 0.7200 0.47000.5600 0.8400 0.27000.9900 0.9100 0.1300];
end
colorFunc=colorFuncFactory(colorList);
CData=colorFunc((h-min(h))./(max(h)-min(h)));
colorList=colorFunc(linspace(0,1,100)');function colorFunc=colorFuncFactory(colorList)
x=(0:size(colorList,1)-1)./(size(colorList,1)-1);
y1=colorList(:,1);y2=colorList(:,2);y3=colorList(:,3);
colorFunc=@(X)[interp1(x,y1,X,'pchip'),interp1(x,y2,X,'pchip'),interp1(x,y3,X,'pchip')];
end
end
2参数说明
输入:
- X,Y 散点坐标
- XList,YList 用来构造密度曲面网格的序列,其实就是把XLim,YLim分成小份,例如XList=0:0.1:10
- colorList 颜色表mx3数组,用来构造将高度映射到颜色函数的数据表
输出:
- CData各个点对应颜色
- h 各个点对应核密度
- XMesh,YMesh,ZMesh 核密度曲面数据
- colorList 插值后更细密的颜色表
3使用方式
假如编写了如下程序:
PntSet1=mvnrnd([2 3],[1 0;0 2],800);
PntSet2=mvnrnd([6 7],[1 0;0 2],800);
PntSet3=mvnrnd([8 9],[1 0;0 1],800);PntSet=[PntSet1;PntSet2;PntSet3];
scatter(PntSet(:,1),PntSet(:,2),'filled');
结果:
3.1散点赋色
将上面那段代码改写
PntSet1=mvnrnd([2 3],[1 0;0 2],800);
PntSet2=mvnrnd([6 7],[1 0;0 2],800);
PntSet3=mvnrnd([8 9],[1 0;0 1],800);PntSet=[PntSet1;PntSet2;PntSet3];CData=density2C(PntSet(:,1),PntSet(:,2),-2:0.1:15,-2:0.1:15);
scatter(PntSet(:,1),PntSet(:,2),'filled','CData',CData);
3.2等高线图
PntSet1=mvnrnd([2 3],[1 0;0 2],800);
PntSet2=mvnrnd([6 7],[1 0;0 2],800);
PntSet3=mvnrnd([8 9],[1 0;0 1],800);PntSet=[PntSet1;PntSet2;PntSet3];[~,~,XMesh,YMesh,ZMesh,colorList]=density2C(PntSet(:,1),PntSet(:,2),-2:0.1:12,-2:0.1:12);
colormap(colorList)
contourf(XMesh,YMesh,ZMesh,10)
3.3带直方图的散点图
PntSet1=mvnrnd([2 3],[1 0;0 2],800);
PntSet2=mvnrnd([6 7],[1 0;0 2],800);
PntSet3=mvnrnd([8 9],[1 0;0 1],800);PntSet=[PntSet1;PntSet2;PntSet3];colorList=[0.9400 0.9700 0.96000.8900 0.9300 0.92000.8200 0.9100 0.88000.6900 0.8500 0.77000.5900 0.7800 0.69000.5500 0.7500 0.65000.4500 0.6500 0.56000.4000 0.5800 0.49000.3500 0.5100 0.42000.2500 0.3600 0.31000.1300 0.1700 0.1400];
CData=density2C(PntSet(:,1),PntSet(:,2),-2:0.1:15,-2:0.1:15,colorList);set(gcf,'Color',[1 1 1]);% 主分布图
ax1=axes('Parent',gcf);hold(ax1,'on')
scatter(ax1,PntSet(:,1),PntSet(:,2),'filled','CData',CData);
ax1.Position=[0.1,0.1,0.6,0.6];% X轴直方图
ax2=axes('Parent',gcf);hold(ax2,'on')
histogram(ax2,PntSet(:,1),'FaceColor',[0.78 0.88 0.82],...'EdgeColor','none','FaceAlpha',0.7)
ax2.Position=[0.1,0.75,0.6,0.15];
ax2.YColor='none';
ax2.XTickLabel='';
ax2.TickDir='out';
ax2.XLim=ax1.XLim;% Y轴直方图
ax3=axes('Parent',gcf);hold(ax3,'on')
histogram(ax3,PntSet(:,2),'FaceColor',[0.78 0.88 0.82],...'EdgeColor','none','FaceAlpha',0.7,'Orientation','horizontal')
ax3.Position=[0.75,0.1,0.15,0.6];
ax3.XColor='none';
ax3.YTickLabel='';
ax3.TickDir='out';
ax3.YLim=ax1.YLim;
3.4带直方图的等高线图
PntSet1=mvnrnd([2 3],[1 0;0 2],800);
PntSet2=mvnrnd([6 7],[1 0;0 2],800);
PntSet3=mvnrnd([8 9],[1 0;0 1],800);PntSet=[PntSet1;PntSet2;PntSet3];
colorList=[0.9300 0.9500 0.97000.7900 0.8400 0.91000.6500 0.7300 0.85000.5100 0.6200 0.79000.3700 0.5100 0.73000.2700 0.4100 0.63000.2100 0.3200 0.49000.1500 0.2200 0.35000.0900 0.1300 0.21000.0300 0.0400 0.0700];
[~,~,XMesh,YMesh,ZMesh,colorList]=density2C(PntSet(:,1),PntSet(:,2),-2:0.1:13,-2:0.1:13,colorList);set(gcf,'Color',[1 1 1]);
% 主分布图
ax1=axes('Parent',gcf);hold(ax1,'on')
colormap(colorList)
contourf(XMesh,YMesh,ZMesh,10,'EdgeColor','none')
ax1.Position=[0.1,0.1,0.6,0.6];
ax1.TickDir='out';% X轴直方图
ax2=axes('Parent',gcf);hold(ax2,'on')
[f,xi]=ksdensity(PntSet(:,1));
fill([xi,xi(1)],[f,0],[0.34 0.47 0.71],'FaceAlpha',...0.3,'EdgeColor',[0.34 0.47 0.71],'LineWidth',1.2)
ax2.Position=[0.1,0.75,0.6,0.15];
ax2.YColor='none';
ax2.XTickLabel='';
ax2.TickDir='out';
ax2.XLim=ax1.XLim;% Y轴直方图
ax3=axes('Parent',gcf);hold(ax3,'on')
[f,yi]=ksdensity(PntSet(:,2));
fill([f,0],[yi,yi(1)],[0.34 0.47 0.71],'FaceAlpha',...0.3,'EdgeColor',[0.34 0.47 0.71],'LineWidth',1.2)
ax3.Position=[0.75,0.1,0.15,0.6];
ax3.XColor='none';
ax3.YTickLabel='';
ax3.TickDir='out';
ax3.YLim=ax1.YLim;
4使用方式扩展–与ggplot修饰器联动
ggplot风格修饰器:(点击图片跳转链接)
示例1
PntSet1=mvnrnd([2 3],[1 0;0 2],800);
PntSet2=mvnrnd([6 7],[1 0;0 2],800);
PntSet3=mvnrnd([8 9],[1 0;0 1],800);PntSet=[PntSet1;PntSet2;PntSet3];ax=gca;
ax.XLim=[-1 13];
ax.YLim=[-1 13];
ax=ggplotAxes2D(ax);CData=density2C(PntSet(:,1),PntSet(:,2),0:0.1:15,0:0.1:15);
scatter(PntSet(:,1),PntSet(:,2),'filled','CData',CData);
是不是瞬间有那味了:
示例2
PntSet1=mvnrnd([2 3],[1 0;0 2],800);
PntSet2=mvnrnd([6 7],[1 0;0 2],800);
PntSet3=mvnrnd([8 9],[1 0;0 1],800);PntSet=[PntSet1;PntSet2;PntSet3];ax=gca;
ax.XLim=[-3 13];
ax.YLim=[-3 13];
ax=ggplotAxes2D(ax);[~,~,XMesh,YMesh,ZMesh,colorList]=density2C(PntSet(:,1),PntSet(:,2),-2:0.1:12,-2:0.1:12);
colormap(colorList)
contourf(XMesh,YMesh,ZMesh,10)
这篇关于教你使用 MATLAB 绘制散点密度图(二维核密度)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!