教你使用 MATLAB 绘制散点密度图(二维核密度)

2024-01-08 13:38

本文主要是介绍教你使用 MATLAB 绘制散点密度图(二维核密度),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

效果:
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
原理也很简单,通过matlab自带的ksdensity获得网格每一点密度,通过密度拟合曲面,再计算每个数据点对应的概率,并将概率映射到颜色即可
为了怕大家找不到函数这次工具函数放到最前面

1工具函数完整代码

function [CData,h,XMesh,YMesh,ZMesh,colorList]=density2C(X,Y,XList,YList,colorList)
[XMesh,YMesh]=meshgrid(XList,YList);
XYi=[XMesh(:) YMesh(:)];
F=ksdensity([X,Y],XYi);
ZMesh=zeros(size(XMesh));
ZMesh(1:length(F))=F;h=interp2(XMesh,YMesh,ZMesh,X,Y);
if nargin<5
colorList=[0.2700         0    0.33000.2700    0.2300    0.51000.1900    0.4100    0.56000.1200    0.5600    0.55000.2100    0.7200    0.47000.5600    0.8400    0.27000.9900    0.9100    0.1300];
end
colorFunc=colorFuncFactory(colorList);
CData=colorFunc((h-min(h))./(max(h)-min(h)));
colorList=colorFunc(linspace(0,1,100)');function colorFunc=colorFuncFactory(colorList)
x=(0:size(colorList,1)-1)./(size(colorList,1)-1);
y1=colorList(:,1);y2=colorList(:,2);y3=colorList(:,3);
colorFunc=@(X)[interp1(x,y1,X,'pchip'),interp1(x,y2,X,'pchip'),interp1(x,y3,X,'pchip')];
end
end

2参数说明

输入:

  • X,Y 散点坐标
  • XList,YList 用来构造密度曲面网格的序列,其实就是把XLim,YLim分成小份,例如XList=0:0.1:10
  • colorList 颜色表mx3数组,用来构造将高度映射到颜色函数的数据表

输出:

  • CData各个点对应颜色
  • h 各个点对应核密度
  • XMesh,YMesh,ZMesh 核密度曲面数据
  • colorList 插值后更细密的颜色表

3使用方式

假如编写了如下程序:

PntSet1=mvnrnd([2 3],[1 0;0 2],800);
PntSet2=mvnrnd([6 7],[1 0;0 2],800);
PntSet3=mvnrnd([8 9],[1 0;0 1],800);PntSet=[PntSet1;PntSet2;PntSet3];
scatter(PntSet(:,1),PntSet(:,2),'filled');

结果:
在这里插入图片描述

3.1散点赋色

将上面那段代码改写

PntSet1=mvnrnd([2 3],[1 0;0 2],800);
PntSet2=mvnrnd([6 7],[1 0;0 2],800);
PntSet3=mvnrnd([8 9],[1 0;0 1],800);PntSet=[PntSet1;PntSet2;PntSet3];CData=density2C(PntSet(:,1),PntSet(:,2),-2:0.1:15,-2:0.1:15);
scatter(PntSet(:,1),PntSet(:,2),'filled','CData',CData);

在这里插入图片描述

3.2等高线图
PntSet1=mvnrnd([2 3],[1 0;0 2],800);
PntSet2=mvnrnd([6 7],[1 0;0 2],800);
PntSet3=mvnrnd([8 9],[1 0;0 1],800);PntSet=[PntSet1;PntSet2;PntSet3];[~,~,XMesh,YMesh,ZMesh,colorList]=density2C(PntSet(:,1),PntSet(:,2),-2:0.1:12,-2:0.1:12);
colormap(colorList)
contourf(XMesh,YMesh,ZMesh,10)

在这里插入图片描述

3.3带直方图的散点图
PntSet1=mvnrnd([2 3],[1 0;0 2],800);
PntSet2=mvnrnd([6 7],[1 0;0 2],800);
PntSet3=mvnrnd([8 9],[1 0;0 1],800);PntSet=[PntSet1;PntSet2;PntSet3];colorList=[0.9400    0.9700    0.96000.8900    0.9300    0.92000.8200    0.9100    0.88000.6900    0.8500    0.77000.5900    0.7800    0.69000.5500    0.7500    0.65000.4500    0.6500    0.56000.4000    0.5800    0.49000.3500    0.5100    0.42000.2500    0.3600    0.31000.1300    0.1700    0.1400];
CData=density2C(PntSet(:,1),PntSet(:,2),-2:0.1:15,-2:0.1:15,colorList);set(gcf,'Color',[1 1 1]);% 主分布图
ax1=axes('Parent',gcf);hold(ax1,'on')
scatter(ax1,PntSet(:,1),PntSet(:,2),'filled','CData',CData);
ax1.Position=[0.1,0.1,0.6,0.6];% X轴直方图
ax2=axes('Parent',gcf);hold(ax2,'on')
histogram(ax2,PntSet(:,1),'FaceColor',[0.78 0.88 0.82],...'EdgeColor','none','FaceAlpha',0.7)
ax2.Position=[0.1,0.75,0.6,0.15];
ax2.YColor='none';
ax2.XTickLabel='';
ax2.TickDir='out';
ax2.XLim=ax1.XLim;% Y轴直方图
ax3=axes('Parent',gcf);hold(ax3,'on')
histogram(ax3,PntSet(:,2),'FaceColor',[0.78 0.88 0.82],...'EdgeColor','none','FaceAlpha',0.7,'Orientation','horizontal')
ax3.Position=[0.75,0.1,0.15,0.6];
ax3.XColor='none';
ax3.YTickLabel='';
ax3.TickDir='out';
ax3.YLim=ax1.YLim;

在这里插入图片描述

3.4带直方图的等高线图
PntSet1=mvnrnd([2 3],[1 0;0 2],800);
PntSet2=mvnrnd([6 7],[1 0;0 2],800);
PntSet3=mvnrnd([8 9],[1 0;0 1],800);PntSet=[PntSet1;PntSet2;PntSet3];
colorList=[0.9300    0.9500    0.97000.7900    0.8400    0.91000.6500    0.7300    0.85000.5100    0.6200    0.79000.3700    0.5100    0.73000.2700    0.4100    0.63000.2100    0.3200    0.49000.1500    0.2200    0.35000.0900    0.1300    0.21000.0300    0.0400    0.0700];
[~,~,XMesh,YMesh,ZMesh,colorList]=density2C(PntSet(:,1),PntSet(:,2),-2:0.1:13,-2:0.1:13,colorList);set(gcf,'Color',[1 1 1]);
% 主分布图
ax1=axes('Parent',gcf);hold(ax1,'on')
colormap(colorList)
contourf(XMesh,YMesh,ZMesh,10,'EdgeColor','none')
ax1.Position=[0.1,0.1,0.6,0.6];
ax1.TickDir='out';% X轴直方图
ax2=axes('Parent',gcf);hold(ax2,'on')
[f,xi]=ksdensity(PntSet(:,1));
fill([xi,xi(1)],[f,0],[0.34 0.47 0.71],'FaceAlpha',...0.3,'EdgeColor',[0.34 0.47 0.71],'LineWidth',1.2)
ax2.Position=[0.1,0.75,0.6,0.15];
ax2.YColor='none';
ax2.XTickLabel='';
ax2.TickDir='out';
ax2.XLim=ax1.XLim;% Y轴直方图
ax3=axes('Parent',gcf);hold(ax3,'on')
[f,yi]=ksdensity(PntSet(:,2));
fill([f,0],[yi,yi(1)],[0.34 0.47 0.71],'FaceAlpha',...0.3,'EdgeColor',[0.34 0.47 0.71],'LineWidth',1.2)
ax3.Position=[0.75,0.1,0.15,0.6];
ax3.XColor='none';
ax3.YTickLabel='';
ax3.TickDir='out';
ax3.YLim=ax1.YLim;

在这里插入图片描述

4使用方式扩展–与ggplot修饰器联动

ggplot风格修饰器:(点击图片跳转链接)


示例1

PntSet1=mvnrnd([2 3],[1 0;0 2],800);
PntSet2=mvnrnd([6 7],[1 0;0 2],800);
PntSet3=mvnrnd([8 9],[1 0;0 1],800);PntSet=[PntSet1;PntSet2;PntSet3];ax=gca;
ax.XLim=[-1 13];
ax.YLim=[-1 13];
ax=ggplotAxes2D(ax);CData=density2C(PntSet(:,1),PntSet(:,2),0:0.1:15,0:0.1:15);
scatter(PntSet(:,1),PntSet(:,2),'filled','CData',CData);

是不是瞬间有那味了:
在这里插入图片描述
示例2

PntSet1=mvnrnd([2 3],[1 0;0 2],800);
PntSet2=mvnrnd([6 7],[1 0;0 2],800);
PntSet3=mvnrnd([8 9],[1 0;0 1],800);PntSet=[PntSet1;PntSet2;PntSet3];ax=gca;
ax.XLim=[-3 13];
ax.YLim=[-3 13];
ax=ggplotAxes2D(ax);[~,~,XMesh,YMesh,ZMesh,colorList]=density2C(PntSet(:,1),PntSet(:,2),-2:0.1:12,-2:0.1:12);
colormap(colorList)
contourf(XMesh,YMesh,ZMesh,10)

在这里插入图片描述

这篇关于教你使用 MATLAB 绘制散点密度图(二维核密度)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/583628

相关文章

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

poj2576(二维背包)

题意:n个人分成两组,两组人数只差小于1 , 并且体重只差最小 对于人数要求恰好装满,对于体重要求尽量多,一开始没做出来,看了下解题,按照自己的感觉写,然后a了 状态转移方程:dp[i][j] = max(dp[i][j],dp[i-1][j-c[k]]+c[k]);其中i表示人数,j表示背包容量,k表示输入的体重的 代码如下: #include<iostream>#include<

hdu2159(二维背包)

这是我的第一道二维背包题,没想到自己一下子就A了,但是代码写的比较乱,下面的代码是我有重新修改的 状态转移:dp[i][j] = max(dp[i][j], dp[i-1][j-c[z]]+v[z]); 其中dp[i][j]表示,打了i个怪物,消耗j的耐力值,所得到的最大经验值 代码如下: #include<iostream>#include<algorithm>#include<

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

git使用的说明总结

Git使用说明 下载安装(下载地址) macOS: Git - Downloading macOS Windows: Git - Downloading Windows Linux/Unix: Git (git-scm.com) 创建新仓库 本地创建新仓库:创建新文件夹,进入文件夹目录,执行指令 git init ,用以创建新的git 克隆仓库 执行指令用以创建一个本地仓库的