SqueezeNet:通过紧凑架构彻底改变深度学习

2024-01-08 06:36

本文主要是介绍SqueezeNet:通过紧凑架构彻底改变深度学习,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、介绍

        在深度学习领域,对效率和性能的追求往往会带来创新的架构。SqueezeNet 是神经网络设计的一项突破,体现了这种追求。本文深入研究了 SqueezeNet 的复杂性,探讨其独特的架构、设计背后的基本原理、应用及其对深度学习领域的影响。

在创新经济中,效率是成功的货币。SqueezeNet 证明了这一点,证明在深度学习领域,少确实可以多。

二、SqueezeNet架构

2.1 综述

        SqueezeNet 是一种卷积神经网络 (CNN),可以用更少的参数实现 AlexNet 级别的精度。其架构设计巧妙,可在保持高精度的同时减小模型尺寸。SqueezeNet 的核心是“fire 模块”,这是一个紧凑的构建块,包含两层:挤压层和扩展层。挤压层利用 1x1 卷积滤波器来压缩输入数据,从而降低维度。随后,扩展层混合使用 1x1 和 3x3 滤波器来增加通道深度,捕获更广泛的特征。

        SqueezeNet 是一种深度神经网络架构,旨在以更少的参数提供 AlexNet 级别的精度。它通过使用更小的卷积滤波器和称为“火模块”的策略来实现这一点。这些模块是“挤压”层和“扩展”层的组合,“挤压”层使用 1x1 滤波器来压缩输入通道,“扩展”层使用 1x1 和 3x3 滤波器的混合来增加通道深度。SqueezeNet 的主要优点是模型尺寸小和计算速度快,这使得它非常适合部署在计算资源有限的环境中,例如移动设备或嵌入式系统。此外,它的体积小,更容易通过网络传输,并且需要更少的存储内存。

2.2 设计原理

        SqueezeNet 设计背后的主要动机是在不影响性能的情况下创建轻量级模型。AlexNet 等传统 CNN 虽然有效,但参数较多,导致计算成本和存储要求较高。SqueezeNet 通过采用更小的滤波器和更少的参数来解决这些挑战,从而减少计算量。这使得它特别适合部署在资源受限的环境中,例如移动设备或嵌入式系统。

2.3 SqueezeNet的应用

        SqueezeNet 的紧凑尺寸和效率为各种应用开辟了新途径。在内存和处理能力有限的移动应用中,SqueezeNet 可实现高级图像识别和实时分析。在机器人技术中,它有助于高效的实时决策。此外,其较小的模型尺寸在基于网络的应用中具有优势,允许在带宽受限的网络上更快地传输神经网络模型。

2.4 对深度学习的影响

        SqueezeNet 通过证明较小的网络可以与较大的网络一样有效,对深度学习领域产生了重大影响。它挑战了传统观念,即更大、更深的网络总是会产生更好的结果。这种范式转变引发了对高效神经网络设计的进一步研究,从而导致了 MobileNet 和 ShuffleNet 等其他紧凑架构的发展。

三、代码

        创建 SqueezeNet 的完整 Python 实现以及合成数据集和绘图涉及几个步骤。我们将首先使用 TensorFlow 或 PyTorch 等深度学习库实现 SqueezeNet 架构。然后,我们将创建一个合成数据集,在此数据集上训练模型,最后绘制训练结果。

以下是如何使用 PyTorch 执行此操作的高级概述:

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
import matplotlib.pyplot as plt# Define the Fire Module
class FireModule(nn.Module):def __init__(self, in_channels, squeeze_channels, expand1x1_channels, expand3x3_channels):super(FireModule, self).__init__()self.squeeze = nn.Conv2d(in_channels, squeeze_channels, kernel_size=1)self.expand1x1 = nn.Conv2d(squeeze_channels, expand1x1_channels, kernel_size=1)self.expand3x3 = nn.Conv2d(squeeze_channels, expand3x3_channels, kernel_size=3, padding=1)def forward(self, x):x = F.relu(self.squeeze(x))return torch.cat([F.relu(self.expand1x1(x)),F.relu(self.expand3x3(x))], 1)class SqueezeNet(nn.Module):def __init__(self, num_classes=1000):super(SqueezeNet, self).__init__()self.num_classes = num_classes# Initial convolution layerself.features = nn.Sequential(nn.Conv2d(3, 96, kernel_size=7, stride=2),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),)# Fire modulesself.features.add_module("fire2", FireModule(96, 16, 64, 64))self.features.add_module("fire3", FireModule(128, 16, 64, 64))self.features.add_module("fire4", FireModule(128, 32, 128, 128))self.features.add_module("maxpool4", nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True))self.features.add_module("fire5", FireModule(256, 32, 128, 128))# Additional Fire modules as needed# ...# Adjust the final Fire module to output 512 channelsself.features.add_module("final_fire", FireModule(256, 64, 256, 256))# Final convolution layerself.final_conv = nn.Conv2d(512, self.num_classes, kernel_size=1)# Dropout and classifierself.classifier = nn.Sequential(nn.Dropout(p=0.5),self.final_conv,nn.ReLU(inplace=True),nn.AdaptiveAvgPool2d((1, 1)))def forward(self, x):x = self.features(x)x = self.classifier(x)return x.view(x.size(0), self.num_classes)# Initialize the model
squeezenet = SqueezeNet()# Synthetic Dataset
class SyntheticDataset(Dataset):def __init__(self, num_samples, num_classes):self.num_samples = num_samplesself.num_classes = num_classesdef __len__(self):return self.num_samplesdef __getitem__(self, idx):image = torch.randn(3, 224, 224)  # Simulating a 3-channel imagelabel = torch.randint(0, self.num_classes, (1,))return image, label# Create the synthetic dataset
synthetic_dataset = SyntheticDataset(num_samples=1000, num_classes=10)
dataloader = DataLoader(synthetic_dataset, batch_size=32, shuffle=True)# Training
optimizer = optim.Adam(squeezenet.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()losses = []
accuracies = []num_epochs = 5  # Example number of epochs
for epoch in range(num_epochs):running_loss = 0.0correct = 0total = 0for images, labels in dataloader:optimizer.zero_grad()outputs = squeezenet(images)loss = criterion(outputs, labels.squeeze())loss.backward()optimizer.step()running_loss += loss.item()_, predicted = torch.max(outputs.data, 1)total += labels.size(0)correct += (predicted == labels.squeeze()).sum().item()epoch_loss = running_loss / len(dataloader)epoch_accuracy = 100 * correct / totallosses.append(epoch_loss)accuracies.append(epoch_accuracy)print(f'Epoch {epoch+1}, Loss: {epoch_loss}, Accuracy: {epoch_accuracy}%')# Plotting
plt.plot(losses)
plt.title('Training Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.show()plt.plot(accuracies)
plt.title('Training Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.show()
Epoch 1, Loss: 4.31704169511795, Accuracy: 9.1%
Epoch 2, Loss: 2.3903158977627754, Accuracy: 9.3%
Epoch 3, Loss: 2.391318053007126, Accuracy: 9.9%
Epoch 4, Loss: 2.366191916167736, Accuracy: 11.6%
Epoch 5, Loss: 2.4050718769431114, Accuracy: 10.6%

        请记住,这是一个高级大纲。每个步骤都需要根据您的具体要求和 PyTorch 文档进行详细实施。此外,对合成数据集的训练不会产生有意义的见解,但对于测试实现很有用。对于实际训练,请考虑使用 CIFAR-10 或 ImageNet 等标准数据集。

四、结论

        SqueezeNet 代表了神经网络发展的一个里程碑。其创新设计成功地平衡了尺寸和性能之间的权衡,使其成为高效深度学习的开创性模型。随着技术不断向更紧凑、更高效的解决方案发展,SqueezeNet 的影响力可能会增长,继续塑造神经网络设计和应用的未来。

这篇关于SqueezeNet:通过紧凑架构彻底改变深度学习的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/582573

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

mybatis的整体架构

mybatis的整体架构分为三层: 1.基础支持层 该层包括:数据源模块、事务管理模块、缓存模块、Binding模块、反射模块、类型转换模块、日志模块、资源加载模块、解析器模块 2.核心处理层 该层包括:配置解析、参数映射、SQL解析、SQL执行、结果集映射、插件 3.接口层 该层包括:SqlSession 基础支持层 该层保护mybatis的基础模块,它们为核心处理层提供了良好的支撑。

百度/小米/滴滴/京东,中台架构比较

小米中台建设实践 01 小米的三大中台建设:业务+数据+技术 业务中台--从业务说起 在中台建设中,需要规范化的服务接口、一致整合化的数据、容器化的技术组件以及弹性的基础设施。并结合业务情况,判定是否真的需要中台。 小米参考了业界优秀的案例包括移动中台、数据中台、业务中台、技术中台等,再结合其业务发展历程及业务现状,整理了中台架构的核心方法论,一是企业如何共享服务,二是如何为业务提供便利。

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识