Java并发包源码学习系列:阻塞队列实现之DelayQueue源码解析

本文主要是介绍Java并发包源码学习系列:阻塞队列实现之DelayQueue源码解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • DelayQueue概述
    • 类图及重要字段
    • Delayed接口
    • Delayed元素案例
    • 构造器
    • void put(E e)
    • E take()
      • first = null 有什么用
    • 总结
    • 参考阅读

系列传送门:

  • Java并发包源码学习系列:AbstractQueuedSynchronizer
  • Java并发包源码学习系列:CLH同步队列及同步资源获取与释放
  • Java并发包源码学习系列:AQS共享式与独占式获取与释放资源的区别
  • Java并发包源码学习系列:ReentrantLock可重入独占锁详解
  • Java并发包源码学习系列:ReentrantReadWriteLock读写锁解析
  • Java并发包源码学习系列:详解Condition条件队列、signal和await
  • Java并发包源码学习系列:挂起与唤醒线程LockSupport工具类
  • Java并发包源码学习系列:JDK1.8的ConcurrentHashMap源码解析
  • Java并发包源码学习系列:阻塞队列BlockingQueue及实现原理分析
  • Java并发包源码学习系列:阻塞队列实现之ArrayBlockingQueue源码解析
  • Java并发包源码学习系列:阻塞队列实现之LinkedBlockingQueue源码解析
  • Java并发包源码学习系列:阻塞队列实现之PriorityBlockingQueue源码解析

DelayQueue概述

DelayQueue是一个支持延时获取元素的无界阻塞队列,使用PriorityQueue来存储元素。

队中的元素必须实现Delayed接口【Delay接口又继承了Comparable,需要实现compareTo方法】,每个元素都需要指明过期时间,通过getDelay(unit)获取元素剩余时间【剩余时间 = 到期时间 - 当前时间】,每次向优先队列中添加元素时根据compareTo方法作为排序规则。

当从队列获取元素时,只有过期的元素才会出队列。

使用场景: 缓存系统设计、定时任务调度等。

类图及重要字段

public class DelayQueue<E extends Delayed> extends AbstractQueue<E>implements BlockingQueue<E> {// 独占锁实现同步private final transient ReentrantLock lock = new ReentrantLock();// 优先队列存放数据private final PriorityQueue<E> q = new PriorityQueue<E>();/*** 基于Leader-Follower模式的变体,用于尽量减少不必要的线程等待*/private Thread leader = null;/*** 与lock对应的条件变量*/private final Condition available = lock.newCondition();    
}
  1. 使用ReentrantLock独占锁实现线程同步,使用Condition实现等待通知机制。
  2. 基于Leader-Follower模式的变体,减少不必要的线程等待。
  3. 内部使用PriorityQueue优先级队列存储元素,且队列中元素必须实现Delayed接口。

Delayed接口

队中的元素必须实现Delayed接口【Delay接口又继承了Comparable,需要实现compareTo方法】,每个元素都需要指明过期时间,通过getDelay(unit)获取元素剩余时间【剩余时间 = 到期时间 - 当前时间】。

每次向优先队列中添加元素时根据compareTo方法作为排序规则,当然我们约定一下,默认q.peek()出来的就是最先过期的元素。

public interface Delayed extends Comparable<Delayed> {// 返回剩余时间long getDelay(TimeUnit unit);
}public interface Comparable<T> {// 定义比较方法public int compareTo(T o);
}

Delayed元素案例

学习了Delayed接口之后,我们看一个实际的案例,加深印象,源于:《Java并发编程之美》。

    static class DelayedElement implements Delayed {private final long delayTime; // 延迟时间private final long expire; // 到期时间private final String taskName; // 任务名称public DelayedElement (long delayTime, String taskName) {this.delayTime = delayTime;this.taskName = taskName;expire = now() + delayTime;}final long now () {return System.currentTimeMillis();}// 剩余时间 = 到期时间 - 当前时间@Overridepublic long getDelay (TimeUnit unit) {return unit.convert(expire - now(), TimeUnit.MILLISECONDS);}@Overridepublic int compareTo (Delayed o) {return (int) (getDelay(TimeUnit.MILLISECONDS) - o.getDelay(TimeUnit.MILLISECONDS));}@Overridepublic String toString () {final StringBuilder res = new StringBuilder("DelayedElement [ ");res.append("delay = ").append(delayTime);res.append(", expire = ").append(expire);res.append(", taskName = '").append(taskName).append('\'');res.append(" ] ");return res.toString();}}public static void main (String[] args) {// 创建delayQueue队列DelayQueue<DelayedElement> delayQueue = new DelayQueue<>();// 创建延迟任务Random random = new Random();for (int i = 0; i < 10; i++) {DelayedElement element = new DelayedElement(random.nextInt(500), "task: " + i);delayQueue.offer(element);}// 依次取出任务并打印DelayedElement ele = null;try {for (; ; ) {while ((ele = delayQueue.take()) != null) {System.out.println(ele);}}} catch (InterruptedException ex) {ex.printStackTrace();}}
// 打印结果
DelayedElement [ delay = 2, expire = 1611995426061, taskName = 'task: 4' ] 
DelayedElement [ delay = 52, expire = 1611995426111, taskName = 'task: 2' ] 
DelayedElement [ delay = 80, expire = 1611995426139, taskName = 'task: 5' ] 
DelayedElement [ delay = 132, expire = 1611995426191, taskName = 'task: 0' ] 
DelayedElement [ delay = 174, expire = 1611995426233, taskName = 'task: 9' ] 
DelayedElement [ delay = 175, expire = 1611995426234, taskName = 'task: 7' ] 
DelayedElement [ delay = 326, expire = 1611995426385, taskName = 'task: 3' ] 
DelayedElement [ delay = 447, expire = 1611995426506, taskName = 'task: 8' ] 
DelayedElement [ delay = 452, expire = 1611995426511, taskName = 'task: 1' ] 
DelayedElement [ delay = 486, expire = 1611995426545, taskName = 'task: 6' ]
  • 实现了compareTo方法,定义比较规则为越早过期的排在队头。
  • 实现了getDelay方法,计算公式为:剩余时间 = 到期时间 - 当前时间。

构造器

DelayQueue构造器相比于前几个,就显得非常easy了。

    public DelayQueue() {}public DelayQueue(Collection<? extends E> c) {this.addAll(c);}

void put(E e)

因为DelayQueue是无界队列,不会因为边界问题产生阻塞,因此put操作和offer操作是一样的。

    public void put(E e) {offer(e);}public boolean offer(E e) {// 获取独占锁final ReentrantLock lock = this.lock;lock.lock();try {// 加入优先队列里q.offer(e);// 判断堆顶元素是不是刚刚插入的元素// 如果判断为true,说明当前这个元素是将最先过期if (q.peek() == e) {// 重置leader线程为nullleader = null; // 激活available变量条件队列中的一个线程available.signal();}return true;} finally {lock.unlock();}}

E take()

take方法将会获取并移除队列里面延迟时间过期的元素 ,如果队列里面没有过期元素则陷入等待。

    public E take() throws InterruptedException {// 获取独占锁final ReentrantLock lock = this.lock;lock.lockInterruptibly();try {for (;;) {// 瞅一瞅谁最快过期E first = q.peek();// 队列为空,则将当前线程置入available的条件队列中,直到里面有元素if (first == null)available.await();else {// 看下还有多久过期long delay = first.getDelay(NANOSECONDS);// 哇,已经过期了,就移除它并返回if (delay <= 0)return q.poll();first = null; // don't retain ref while waiting// leader不为null表示其他线程也在执行take// 则将当前线程置入available的条件队列中if (leader != null)available.await();else {// 如果leader为null,则选择当前线程作为leader线程Thread thisThread = Thread.currentThread();leader = thisThread;try {// 等待delay时间,时间到之后,会出条件队列,继续竞争锁available.awaitNanos(delay);} finally {if (leader == thisThread)leader = null;}}}}} finally {if (leader == null && q.peek() != null)available.signal();lock.unlock();}}

first = null 有什么用

如果不设置first = null,将会引起内存泄露。

  • 线程A到达,队首元素没有到期,设置leader = 线程A,并且执行available.awaitNanos(delay);等待元素过期。
  • 这时线程B来了,因为leader != null,则会available.await();阻塞,线程C、D、E同理。
  • 线程A阻塞完毕了,再次循环,获取列首元素成功,出列。

这个时候列首元素应该会被回收掉,但是问题是它还被线程B、线程C持有着,所以不会回收,如果线程增多,且队首元素无限期的不能回收,就会造成内存泄漏。

总结

DelayQueue是一个支持延时获取元素无界阻塞队列,使用PriorityQueue来存储元素。

队中的元素必须实现Delayed接口【Delay接口又继承了Comparable,需要实现compareTo方法】,每个元素都需要指明过期时间,通过getDelay(unit)获取元素剩余时间【剩余时间 = 到期时间 - 当前时间】,每次向优先队列中添加元素时根据compareTo方法作为排序规则。

基于Leader-Follower模式使用leader变量,减少不必要的线程等待。

DelayQueue是无界队列,因此插入操作是非阻塞的。但是take操作从队列获取元素时,是阻塞的,阻塞规则为:

  • 当一个线程调用队列的take方法,如果队列为空,则将会调用available.await()陷入阻塞。
  • 如果队列不为空,则查看队列的队首元素是否过期,根据getDelay的返回值是否小于0判断,如果过期则返回该元素。
  • 如果队首元素未过期,则判断当前线程是否为leader线程,如果不是,表明有其他线程在执行take操作,就调用available.await()陷入阻塞。
  • 如果没有其他线程在执行take,就将当前线程设置为leader,并等待队首元素过期,available.awaitNanos(delay)
  • leader线程退出take之后,将会调用available.signal()唤醒一个follower线程,接着回到开始那步。

参考阅读

  • 《Java并发编程的艺术》

  • 《Java并发编程之美》

  • 【死磕Java并发】—–J.U.C之阻塞队列:DelayQueue

这篇关于Java并发包源码学习系列:阻塞队列实现之DelayQueue源码解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/582123

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

JVM 的类初始化机制

前言 当你在 Java 程序中new对象时,有没有考虑过 JVM 是如何把静态的字节码(byte code)转化为运行时对象的呢,这个问题看似简单,但清楚的同学相信也不会太多,这篇文章首先介绍 JVM 类初始化的机制,然后给出几个易出错的实例来分析,帮助大家更好理解这个知识点。 JVM 将字节码转化为运行时对象分为三个阶段,分别是:loading 、Linking、initialization

Spring Security 基于表达式的权限控制

前言 spring security 3.0已经可以使用spring el表达式来控制授权,允许在表达式中使用复杂的布尔逻辑来控制访问的权限。 常见的表达式 Spring Security可用表达式对象的基类是SecurityExpressionRoot。 表达式描述hasRole([role])用户拥有制定的角色时返回true (Spring security默认会带有ROLE_前缀),去

浅析Spring Security认证过程

类图 为了方便理解Spring Security认证流程,特意画了如下的类图,包含相关的核心认证类 概述 核心验证器 AuthenticationManager 该对象提供了认证方法的入口,接收一个Authentiaton对象作为参数; public interface AuthenticationManager {Authentication authenticate(Authenti

Spring Security--Architecture Overview

1 核心组件 这一节主要介绍一些在Spring Security中常见且核心的Java类,它们之间的依赖,构建起了整个框架。想要理解整个架构,最起码得对这些类眼熟。 1.1 SecurityContextHolder SecurityContextHolder用于存储安全上下文(security context)的信息。当前操作的用户是谁,该用户是否已经被认证,他拥有哪些角色权限…这些都被保

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

Java架构师知识体认识

源码分析 常用设计模式 Proxy代理模式Factory工厂模式Singleton单例模式Delegate委派模式Strategy策略模式Prototype原型模式Template模板模式 Spring5 beans 接口实例化代理Bean操作 Context Ioc容器设计原理及高级特性Aop设计原理Factorybean与Beanfactory Transaction 声明式事物