PyTorch|构建自己的卷积神经网络——nn.Sequential()

2024-01-07 22:20

本文主要是介绍PyTorch|构建自己的卷积神经网络——nn.Sequential(),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

图片

之前在构建神经网络时,我们一般是采用这种方式,就像这样:

class Network1(nn.Module):    def __init__(self):        super(Network1,self).__init__()        self.conv1 = nn.Conv2d(in_channels=3, out_channels=6, kernel_size=5)        self.conv2 = nn.Conv2d(in_channels=6, out_channels=12, kernel_size=5)        self.fc1 = nn.Linear(in_features= 12*20*20, out_features=120)        self.out = nn.Linear(in_features=120, out_features=10)        def forward(self, t):        t=self.conv1(t)        t=self.conv2(t)        t=t.flatten(start_dim=1)        t=self.fc1(t)        t=self.out(t)        return t

在__init__()模块中,一系列的层被定义,比如卷积层,全连接层...在forward()方法中,我们对这些层进行操作,使得数据在网络中进行传播。

随着层的增加,以及池化操作,激活函数操作的增加,代码似乎变得很复杂。

在PyTorch中,提供了一种序列容器,叫做nn.Sequential(),它可以按照网络模块被添加的顺序依次执行。

于是上面的代码可以以这样的方式重写:​​​​​​​

class Network2(nn.Module):    def __init__(self):        super(Network2,self).__init__()        self.layer1=nn.Sequential(nn.Conv2d(in_channels=3, out_channels=6, kernel_size=5),                                      nn.Conv2d(in_channels=6, out_channels=12, kernel_size=5),                                      nn.Flatten(),                                      nn.Linear(in_features= 12*20*20, out_features=120),                                      nn.Linear(in_features=120, out_features=10)                                         )    def forward(self,t):        t=self.layer1(t)        return t

让我们将一张图片输入到这两个网络中,看看会发生什么?​​​​​​​

path="E:\\3-10\\input1.jpg"img=Image.open(path)img=img.resize((28,28))#改变图片尺寸img=np.array(img)#转换为ndarrayimg=torch.tensor(img,dtype=torch.float32)#转换为张量img=img.permute(2,0,1)#改变维度顺序
img=img.unsqueeze(0)#增加批次维度img.size()​​​​​​
torch.manual_seed(10)#随机数种子net1=Network1()torch.manual_seed(10)net2=Network2()net1(img),net2(img)
(tensor([[  8.6586,   5.6796, -10.6183, -14.5155,  -5.1435,  -1.2218, -35.0356,            9.9759, -15.0035, -31.1104]], grad_fn=<AddmmBackward0>), tensor([[  8.6586,   5.6796, -10.6183, -14.5155,  -5.1435,  -1.2218, -35.0356,            9.9759, -15.0035, -31.1104]], grad_fn=<AddmmBackward0>))

注:由于每次初始化网络时,权重是随机的,所以要设置一个随机数种子,使得两个网络以一种固定的权重初始化,以确保两个网络在接受数据输入前完全相同。

结果很显然,两种网络输出了同样的结果!


第一种构建网络的方法让层和操作隔离开来,使得我们在构建网络时不同部分时专注于一点即可,而第二种方法则是直接按照顺序直接构建了网络,看起来似乎更简洁。

当然,以什么方式构建网络完全取决于习惯,这并不会对结果造成任何影响!

这篇关于PyTorch|构建自己的卷积神经网络——nn.Sequential()的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/581406

相关文章

nginx-rtmp-module构建流媒体直播服务器实战指南

《nginx-rtmp-module构建流媒体直播服务器实战指南》本文主要介绍了nginx-rtmp-module构建流媒体直播服务器实战指南,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. RTMP协议介绍与应用RTMP协议的原理RTMP协议的应用RTMP与现代流媒体技术的关系2

PyTorch使用教程之Tensor包详解

《PyTorch使用教程之Tensor包详解》这篇文章介绍了PyTorch中的张量(Tensor)数据结构,包括张量的数据类型、初始化、常用操作、属性等,张量是PyTorch框架中的核心数据结构,支持... 目录1、张量Tensor2、数据类型3、初始化(构造张量)4、常用操作5、常用属性5.1 存储(st

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Golang使用etcd构建分布式锁的示例分享

《Golang使用etcd构建分布式锁的示例分享》在本教程中,我们将学习如何使用Go和etcd构建分布式锁系统,分布式锁系统对于管理对分布式系统中共享资源的并发访问至关重要,它有助于维护一致性,防止竞... 目录引言环境准备新建Go项目实现加锁和解锁功能测试分布式锁重构实现失败重试总结引言我们将使用Go作

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

maven 编译构建可以执行的jar包

💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:「stormsha的主页」👈,「stormsha的知识库」👈持续学习,不断总结,共同进步,为了踏实,做好当下事儿~ 专栏导航 Python系列: Python面试题合集,剑指大厂Git系列: Git操作技巧GO

嵌入式Openharmony系统构建与启动详解

大家好,今天主要给大家分享一下,如何构建Openharmony子系统以及系统的启动过程分解。 第一:OpenHarmony系统构建      首先熟悉一下,构建系统是一种自动化处理工具的集合,通过将源代码文件进行一系列处理,最终生成和用户可以使用的目标文件。这里的目标文件包括静态链接库文件、动态链接库文件、可执行文件、脚本文件、配置文件等。      我们在编写hellowor

利用命令模式构建高效的手游后端架构

在现代手游开发中,后端架构的设计对于支持高并发、快速迭代和复杂游戏逻辑至关重要。命令模式作为一种行为设计模式,可以有效地解耦请求的发起者与接收者,提升系统的可维护性和扩展性。本文将深入探讨如何利用命令模式构建一个强大且灵活的手游后端架构。 1. 命令模式的概念与优势 命令模式通过将请求封装为对象,使得请求的发起者和接收者之间的耦合度降低。这种模式的主要优势包括: 解耦请求发起者与处理者