PyTorch|构建自己的卷积神经网络——nn.Sequential()

2024-01-07 22:20

本文主要是介绍PyTorch|构建自己的卷积神经网络——nn.Sequential(),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

图片

之前在构建神经网络时,我们一般是采用这种方式,就像这样:

class Network1(nn.Module):    def __init__(self):        super(Network1,self).__init__()        self.conv1 = nn.Conv2d(in_channels=3, out_channels=6, kernel_size=5)        self.conv2 = nn.Conv2d(in_channels=6, out_channels=12, kernel_size=5)        self.fc1 = nn.Linear(in_features= 12*20*20, out_features=120)        self.out = nn.Linear(in_features=120, out_features=10)        def forward(self, t):        t=self.conv1(t)        t=self.conv2(t)        t=t.flatten(start_dim=1)        t=self.fc1(t)        t=self.out(t)        return t

在__init__()模块中,一系列的层被定义,比如卷积层,全连接层...在forward()方法中,我们对这些层进行操作,使得数据在网络中进行传播。

随着层的增加,以及池化操作,激活函数操作的增加,代码似乎变得很复杂。

在PyTorch中,提供了一种序列容器,叫做nn.Sequential(),它可以按照网络模块被添加的顺序依次执行。

于是上面的代码可以以这样的方式重写:​​​​​​​

class Network2(nn.Module):    def __init__(self):        super(Network2,self).__init__()        self.layer1=nn.Sequential(nn.Conv2d(in_channels=3, out_channels=6, kernel_size=5),                                      nn.Conv2d(in_channels=6, out_channels=12, kernel_size=5),                                      nn.Flatten(),                                      nn.Linear(in_features= 12*20*20, out_features=120),                                      nn.Linear(in_features=120, out_features=10)                                         )    def forward(self,t):        t=self.layer1(t)        return t

让我们将一张图片输入到这两个网络中,看看会发生什么?​​​​​​​

path="E:\\3-10\\input1.jpg"img=Image.open(path)img=img.resize((28,28))#改变图片尺寸img=np.array(img)#转换为ndarrayimg=torch.tensor(img,dtype=torch.float32)#转换为张量img=img.permute(2,0,1)#改变维度顺序
img=img.unsqueeze(0)#增加批次维度img.size()​​​​​​
torch.manual_seed(10)#随机数种子net1=Network1()torch.manual_seed(10)net2=Network2()net1(img),net2(img)
(tensor([[  8.6586,   5.6796, -10.6183, -14.5155,  -5.1435,  -1.2218, -35.0356,            9.9759, -15.0035, -31.1104]], grad_fn=<AddmmBackward0>), tensor([[  8.6586,   5.6796, -10.6183, -14.5155,  -5.1435,  -1.2218, -35.0356,            9.9759, -15.0035, -31.1104]], grad_fn=<AddmmBackward0>))

注:由于每次初始化网络时,权重是随机的,所以要设置一个随机数种子,使得两个网络以一种固定的权重初始化,以确保两个网络在接受数据输入前完全相同。

结果很显然,两种网络输出了同样的结果!


第一种构建网络的方法让层和操作隔离开来,使得我们在构建网络时不同部分时专注于一点即可,而第二种方法则是直接按照顺序直接构建了网络,看起来似乎更简洁。

当然,以什么方式构建网络完全取决于习惯,这并不会对结果造成任何影响!

这篇关于PyTorch|构建自己的卷积神经网络——nn.Sequential()的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/581406

相关文章

一文详解如何从零构建Spring Boot Starter并实现整合

《一文详解如何从零构建SpringBootStarter并实现整合》SpringBoot是一个开源的Java基础框架,用于创建独立、生产级的基于Spring框架的应用程序,:本文主要介绍如何从... 目录一、Spring Boot Starter的核心价值二、Starter项目创建全流程2.1 项目初始化(

使用Java实现通用树形结构构建工具类

《使用Java实现通用树形结构构建工具类》这篇文章主要为大家详细介绍了如何使用Java实现通用树形结构构建工具类,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录完整代码一、设计思想与核心功能二、核心实现原理1. 数据结构准备阶段2. 循环依赖检测算法3. 树形结构构建4. 搜索子

使用PyTorch实现手写数字识别功能

《使用PyTorch实现手写数字识别功能》在人工智能的世界里,计算机视觉是最具魅力的领域之一,通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识... 目录当计算机学会“看”数字搭建开发环境MNIST数据集解析1. 认识手写数字数据库2. 数据预处理的

使用Python和python-pptx构建Markdown到PowerPoint转换器

《使用Python和python-pptx构建Markdown到PowerPoint转换器》在这篇博客中,我们将深入分析一个使用Python开发的应用程序,该程序可以将Markdown文件转换为Pow... 目录引言应用概述代码结构与分析1. 类定义与初始化2. 事件处理3. Markdown 处理4. 转

Pytorch微调BERT实现命名实体识别

《Pytorch微调BERT实现命名实体识别》命名实体识别(NER)是自然语言处理(NLP)中的一项关键任务,它涉及识别和分类文本中的关键实体,BERT是一种强大的语言表示模型,在各种NLP任务中显著... 目录环境准备加载预训练BERT模型准备数据集标记与对齐微调 BERT最后总结环境准备在继续之前,确

pytorch+torchvision+python版本对应及环境安装

《pytorch+torchvision+python版本对应及环境安装》本文主要介绍了pytorch+torchvision+python版本对应及环境安装,安装过程中需要注意Numpy版本的降级,... 目录一、版本对应二、安装命令(pip)1. 版本2. 安装全过程3. 命令相关解释参考文章一、版本对

Java使用Mail构建邮件功能的完整指南

《Java使用Mail构建邮件功能的完整指南》JavaMailAPI是一个功能强大的工具,它可以帮助开发者轻松实现邮件的发送与接收功能,本文将介绍如何使用JavaMail发送和接收邮件,希望对大家有所... 目录1、简述2、主要特点3、发送样例3.1 发送纯文本邮件3.2 发送 html 邮件3.3 发送带

Python结合Flask框架构建一个简易的远程控制系统

《Python结合Flask框架构建一个简易的远程控制系统》这篇文章主要为大家详细介绍了如何使用Python与Flask框架构建一个简易的远程控制系统,能够远程执行操作命令(如关机、重启、锁屏等),还... 目录1.概述2.功能使用系统命令执行实时屏幕监控3. BUG修复过程1. Authorization

从零教你安装pytorch并在pycharm中使用

《从零教你安装pytorch并在pycharm中使用》本文详细介绍了如何使用Anaconda包管理工具创建虚拟环境,并安装CUDA加速平台和PyTorch库,同时在PyCharm中配置和使用PyTor... 目录背景介绍安装Anaconda安装CUDA安装pytorch报错解决——fbgemm.dll连接p

pycharm远程连接服务器运行pytorch的过程详解

《pycharm远程连接服务器运行pytorch的过程详解》:本文主要介绍在Linux环境下使用Anaconda管理不同版本的Python环境,并通过PyCharm远程连接服务器来运行PyTorc... 目录linux部署pytorch背景介绍Anaconda安装Linux安装pytorch虚拟环境安装cu