强化学习的数学原理学习笔记 - 蒙特卡洛方法(Monte Carlo)

2024-01-07 20:12

本文主要是介绍强化学习的数学原理学习笔记 - 蒙特卡洛方法(Monte Carlo),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 概览:RL方法分类
  • 蒙特卡洛方法(Monte Carlo,MC)
    • MC Basic
    • MC Exploring Starts
    • 🟦MC ε-Greedy


本系列文章介绍强化学习基础知识与经典算法原理,大部分内容来自西湖大学赵世钰老师的强化学习的数学原理课程(参考资料1),并参考了部分参考资料2、3的内容进行补充。

系列博文索引:(更新中)

  • 强化学习的数学原理学习笔记 - RL基础知识
  • 强化学习的数学原理学习笔记 - 基于模型(Model-based)
  • 强化学习的数学原理学习笔记 - 蒙特卡洛方法(Monte Carlo)
  • 强化学习的数学原理学习笔记 - 时序差分学习(Temporal Difference)

参考资料:

  1. 【强化学习的数学原理】课程:从零开始到透彻理解(完结)(主要)
  2. Sutton & Barto Book: Reinforcement Learning: An Introduction
  3. 机器学习笔记

*注:【】内文字为个人想法,不一定准确

概览:RL方法分类

图源:https://zhuanlan.zhihu.com/p/36494307
*图源:https://zhuanlan.zhihu.com/p/36494307

蒙特卡洛方法(Monte Carlo,MC)

求解RL问题,要么需要模型,要么需要数据。之前介绍了基于模型(model-based)的方法。然而在实际场景中,环境的模型(如状态转移函数)往往是未知的,这就需要用无模型(model-free)方法解决问题。

无模型的方法可以分为两大类:蒙特卡洛方法(Monte Carlo,MC)和时序差分学习(Temporal Difference,TD)。本文介绍蒙特卡洛方法。

蒙特卡洛思想:通过大数据量的样本采样来进行估计【本质上是大数定律的应用(基于独立同分布采样)】,将策略迭代中依赖于model的部分替换为model-free。

MC的核心idea:并非直接求解 q π ( s , a ) q_{\pi} (s, a) qπ(s,a)的准确值,而是基于数据(sample / experience)来估计 q π ( s , a ) q_{\pi} (s, a) qπ(s,a)的值。MC直接通过动作值的定义进行均值估计,即:
q π ( s , a ) = E π [ G t ∣ S t = s , A t = a ] ≈ 1 N ∑ i = 1 N g ( i ) ( s , a ) q_{\pi}(s, a) = \mathbb{E}_\pi [ G_t | S_t = s, A_t = a ] \approx \frac{1}{N} \sum^N_{i=1} g^{(i)} (s, a) qπ(s,a)=Eπ[GtSt=s,At=a]N1i=1Ng(i)(s,a)
其中 g ( i ) ( s , a ) g^{(i)} (s, a) g(i)(s,a)表示对于 G t G_t Gt的第 i i i个采样。

MC Basic

算法步骤:在第 k k k次迭代中,给定策略 π k \pi_k πk(随机初始策略: π 0 \pi_0 π0

  • 策略评估:对每个状态-动作对 ( s , a ) (s, a) (s,a),运行无穷(或足够多)次episode,估算 q π k ( s , a ) q_{\pi_{k}} (s, a) qπk(s,a)
  • 策略提升:基于估算的 q π k ( s , a ) q_{\pi_{k}} (s, a) qπk(s,a),求解迭代策略 π k + 1 ( s ) = arg max ⁡ π ∑ a π ( a ∣ s ) q π k ( s , a ) \pi_{k+1}(s) = \argmax_\pi \sum_a \pi(a|s) q_{\pi_{k}}(s, a) πk+1(s)=argmaxπaπ(as)qπk(s,a)

MC Basic与策略迭代的区别:在第 k k k次迭代中

  • 策略迭代使用迭代方法求出状态值 v π k v_{\pi_k} vπk,并基于状态值求出动作值 q π k ( s , a ) q_{\pi_k} (s, a) qπk(s,a)
  • MC Basic直接基于采样/经验均值估计 q π k ( s , a ) q_{\pi_k} (s, a) qπk(s,a)(不需要估计状态值)

*MC Basic只是用来说明MC的核心idea,并不会在实际中应用,因为其非常低效。

MC Exploring Starts

思想:提升MC Basic的效率

  • 利用数据:对于一个轨迹,从后往前利用 ( s , a ) (s, a) (s,a)状态-动作对采样做估计
    • 例如:对于轨迹 s 1 → a 2 s 2 → a 4 s 1 → a 2 s 2 → a 3 s 5 → a 1 ⋯ s_1 \xrightarrow{a_2} s_2 \xrightarrow{a_4} s_1 \xrightarrow{a_2} s_2 \xrightarrow{a_3} s_5 \xrightarrow{a_1} \cdots s1a2 s2a4 s1a2 s2a3 s5a1 ,从后往前采样,即先估计 q π ( s 5 , a 1 ) q_\pi(s_5, a_1) qπ(s5,a1),再估计 q π ( s 2 , a 3 ) = R t + 4 + γ q π ( s 5 , a 1 ) q_\pi(s_2, a_3) = R_{t+4} + \gamma q_\pi(s_5, a_1) qπ(s2,a3)=Rt+4+γqπ(s5,a1),进而估计 q π ( s 1 , a 2 ) = R t + 3 + γ q π ( s 2 , a 3 ) q_\pi(s_1, a_2) = R_{t+3} + \gamma q_\pi(s_2, a_3) qπ(s1,a2)=Rt+3+γqπ(s2,a3),以此类推
  • 更新策略:不必等待所有episode的数据收集完毕,直接基于单个episode进行估计,类似于截断策略迭代(单次估计不准确,但快)
    • 这是通用策略迭代(Generalized Policy Iteration,GPI)的思想

MC Exploring Starts

  • Exploring:探索每个 ( s , a ) (s, a) (s,a)状态-动作对
  • Starts:从每个状态-动作对开始一个episode
    • 与Visit对应:从其他的状态-动作对开始一个episode,但其轨迹能经过当前的状态-动作对

🟦MC ε-Greedy

Exploring Starts在实际中难以实现,考虑引入soft policy:随机(stochastic)选择动作

ε-Greedy策略
π ( a ∣ s ) = { 1 − ε ∣ A ( s ) ∣ ( ∣ A ( s ) ∣ − 1 ) , for the greedy action,  ε ∣ A ( s ) ∣ , for other  ∣ A ( s ) ∣ − 1 actions. \pi(a|s) = \begin{cases} 1-\frac{\varepsilon}{|\mathcal{A}(s)|} (|\mathcal{A}(s)|-1), &\text{for the greedy action, } \\ \frac{\varepsilon}{|\mathcal{A}(s)|}, &\text{for other } |\mathcal{A}(s)|-1 \text{ actions.} \end{cases} π(as)={1A(s)ε(A(s)1),A(s)ε,for the greedy action, for other A(s)1 actions.
其中, ε ∈ [ 0 , 1 ] \varepsilon \in [0,1] ε[0,1] ∣ A ( s ) ∣ |\mathcal{A}(s)| A(s)表示状态 s s s下的动作数量。

  • 直观理解:以较高概率选择贪心动作(greedy action),以较低均等概率选择其他动作
  • 特性:选择贪心动作的概率永远不低于选择其他动作的概率
  • 目的:平衡exploitation(探索)和exploration(利用)
    • ε = 0 \varepsilon = 0 ε=0:侧重于利用,永远选择贪心动作
    • ε = 1 \varepsilon = 1 ε=1:侧重于探索,以均等概率选择所有动作(均匀分布)

MC ε-Greedy:在策略提升阶段,求解下式
π k + 1 ( s ) = arg max ⁡ π ∈ Π ε ∑ a π ( a ∣ s ) q π k ( s , a ) \pi_{k+1}(s) = \argmax_{\color{red}\pi \in \Pi_\varepsilon} \sum_a \pi(a|s) q_{\pi_{k}}(s, a) πk+1(s)=πΠεargmaxaπ(as)qπk(s,a)

其中, π ∈ Π ε \pi \in \Pi_\varepsilon πΠε表示所有ε-Greedy策略的集合。得到的最优策略为:
π k + 1 ( a ∣ s ) = { 1 − ε ∣ A ( s ) ∣ ( ∣ A ( s ) ∣ − 1 ) , a = a k ∗ , ε ∣ A ( s ) ∣ , a ≠ a k ∗ . \pi_{k+1}(a|s) = \begin{cases} 1-\frac{\varepsilon}{|\mathcal{A}(s)|} (|\mathcal{A}(s)|-1), &a = a_k^*, \\ \frac{\varepsilon}{|\mathcal{A}(s)|}, &a \neq a_k^*. \end{cases} πk+1(as)={1A(s)ε(A(s)1),A(s)ε,a=ak,a=ak.

MC ε-Greedy与MC Basic和MC Exploring Starts的区别:

  • 后二者求解的范围是 π ∈ Π \pi \in \Pi πΠ,即所有策略的集合
  • 后二者得到的是确定性策略,前者得到的是随机策略

MC ε-Greedy与MC Exploring Starts的唯一区别在于ε-Greedy策略,因此MC ε-Greedy不需要Exploring Starts。

MC ε-Greedy通过探索性牺牲了最优性,但可以通过设置一个较小的ε(如0.1)进行平衡

  • 在实际中,可以为ε设置一个较大的初始值,随着迭代轮数逐渐减小其取值
  • ε的值越大,最终策略的最优性越差

最终训练得到的策略,可以去掉ε,直接使用greedy的确定性策略(consistent)。

这篇关于强化学习的数学原理学习笔记 - 蒙特卡洛方法(Monte Carlo)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/581115

相关文章

51单片机学习记录———定时器

文章目录 前言一、定时器介绍二、STC89C52定时器资源三、定时器框图四、定时器模式五、定时器相关寄存器六、定时器练习 前言 一个学习嵌入式的小白~ 有问题评论区或私信指出~ 提示:以下是本篇文章正文内容,下面案例可供参考 一、定时器介绍 定时器介绍:51单片机的定时器属于单片机的内部资源,其电路的连接和运转均在单片机内部完成。 定时器作用: 1.用于计数系统,可

问题:第一次世界大战的起止时间是 #其他#学习方法#微信

问题:第一次世界大战的起止时间是 A.1913 ~1918 年 B.1913 ~1918 年 C.1914 ~1918 年 D.1914 ~1919 年 参考答案如图所示

[word] word设置上标快捷键 #学习方法#其他#媒体

word设置上标快捷键 办公中,少不了使用word,这个是大家必备的软件,今天给大家分享word设置上标快捷键,希望在办公中能帮到您! 1、添加上标 在录入一些公式,或者是化学产品时,需要添加上标内容,按下快捷键Ctrl+shift++就能将需要的内容设置为上标符号。 word设置上标快捷键的方法就是以上内容了,需要的小伙伴都可以试一试呢!

Tolua使用笔记(上)

目录   1.准备工作 2.运行例子 01.HelloWorld:在C#中,创建和销毁Lua虚拟机 和 简单调用。 02.ScriptsFromFile:在C#中,对一个lua文件的执行调用 03.CallLuaFunction:在C#中,对lua函数的操作 04.AccessingLuaVariables:在C#中,对lua变量的操作 05.LuaCoroutine:在Lua中,

AssetBundle学习笔记

AssetBundle是unity自定义的资源格式,通过调用引擎的资源打包接口对资源进行打包成.assetbundle格式的资源包。本文介绍了AssetBundle的生成,使用,加载,卸载以及Unity资源更新的一个基本步骤。 目录 1.定义: 2.AssetBundle的生成: 1)设置AssetBundle包的属性——通过编辑器界面 补充:分组策略 2)调用引擎接口API

Javascript高级程序设计(第四版)--学习记录之变量、内存

原始值与引用值 原始值:简单的数据即基础数据类型,按值访问。 引用值:由多个值构成的对象即复杂数据类型,按引用访问。 动态属性 对于引用值而言,可以随时添加、修改和删除其属性和方法。 let person = new Object();person.name = 'Jason';person.age = 42;console.log(person.name,person.age);//'J

大学湖北中医药大学法医学试题及答案,分享几个实用搜题和学习工具 #微信#学习方法#职场发展

今天分享拥有拍照搜题、文字搜题、语音搜题、多重搜题等搜题模式,可以快速查找问题解析,加深对题目答案的理解。 1.快练题 这是一个网站 找题的网站海量题库,在线搜题,快速刷题~为您提供百万优质题库,直接搜索题库名称,支持多种刷题模式:顺序练习、语音听题、本地搜题、顺序阅读、模拟考试、组卷考试、赶快下载吧! 2.彩虹搜题 这是个老公众号了 支持手写输入,截图搜题,详细步骤,解题必备

电脑不小心删除的文件怎么恢复?4个必备恢复方法!

“刚刚在对电脑里的某些垃圾文件进行清理时,我一不小心误删了比较重要的数据。这些误删的数据还有机会恢复吗?希望大家帮帮我,非常感谢!” 在这个数字化飞速发展的时代,电脑早已成为我们日常生活和工作中不可或缺的一部分。然而,就像生活中的小插曲一样,有时我们可能会在不经意间犯下一些小错误,比如不小心删除了重要的文件。 当那份文件消失在眼前,仿佛被时间吞噬,我们不禁会心生焦虑。但别担心,就像每个问题

《offer来了》第二章学习笔记

1.集合 Java四种集合:List、Queue、Set和Map 1.1.List:可重复 有序的Collection ArrayList: 基于数组实现,增删慢,查询快,线程不安全 Vector: 基于数组实现,增删慢,查询快,线程安全 LinkedList: 基于双向链实现,增删快,查询慢,线程不安全 1.2.Queue:队列 ArrayBlockingQueue:

硬件基础知识——自学习梳理

计算机存储分为闪存和永久性存储。 硬盘(永久存储)主要分为机械磁盘和固态硬盘。 机械磁盘主要靠磁颗粒的正负极方向来存储0或1,且机械磁盘没有使用寿命。 固态硬盘就有使用寿命了,大概支持30w次的读写操作。 闪存使用的是电容进行存储,断电数据就没了。 器件之间传输bit数据在总线上是一个一个传输的,因为通过电压传输(电流不稳定),但是电压属于电势能,所以可以叠加互相干扰,这也就是硬盘,U盘