零基础入门语义分割-地表建筑物识别 Task1 赛题理解 -学习笔记

本文主要是介绍零基础入门语义分割-地表建筑物识别 Task1 赛题理解 -学习笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

比赛地址:零基础入门语义分割比赛-地表建筑物识别,该比赛是由天池和Datawhale联合举办的学习赛,进入比赛页面可以下载相关的数据集。

学习任务:学习任务,查看学习任务,有层次递进的进行学习。

源码地址:源码baseline,源码在Datawhale的github上面,里面可以找到这次比赛的源码。

赛题理解:

赛题名称:零基础入门语义分割 - 地表建筑物识别
赛题目标:通过本次赛题可以引导大家熟练掌握语义分割任务的定义,具体的解题流程和相应的模型,并掌握语义分割任务的发展。
赛题任务:赛题以计算机视觉为背景,要求选手使用给定的航拍图像训练模型并完成地表建筑物识 别任务。

学习目标:

理解赛题背景和赛题数据
完成赛题报名和数据下载,理解赛题的解题思路

 

赛题数据:

遥感技术已成为获取地表覆盖信息最为行之有效的手段,遥感技术已经成功应用于地表覆盖检测、植 被面积检测和建筑物检测任务。本赛题使用航拍数据,需要参赛选手完成地表建筑物识别,将地表航拍图
像素划分为有建筑物和无建筑物两类。 如下图,左边为原始航拍图,右边为对应的建筑物标注。

赛题数据来源( Inria Aerial Image Labeling ),并进行拆分处理。数据集报名后可见并可下载。赛题 数据为航拍图,需要参赛选手识别图片中的地表建筑具体像素位置。

 

数据标签

 

赛题为语义分割任务,因此具体的标签为图像像素类别。在赛题数据中像素属于 2 类(无建筑物和有 建筑物),因此标签为有建筑物的像素。赛题原始图片为 jpg 格式,标签为 RLE 编码的字符串。
RLE 全称( run-length encoding ),翻译为游程编码或行程长度编码,对连续的黑、白像素数以不同 的码字进行编码。RLE 是一种简单的非破坏性资料压缩法,经常用在在语义分割比赛中对标签进行编码。
RLE 与图片之间的转换如下:

 

评价指标:

赛题使用 Dice coeffiffifficient 来衡量选手结果与真实标签的差异性, Dice coeffiffifficient 可以按像素差异性来 比较结果的差异性。Dice coeffiffifficient 的具体计算方式如下:

其中 X 是预测结果, Y 为真实标签的结果。当 X Y 完全相同时 Dice coeffiffifficient 1 ,排行榜使 用所有测试集图片的平均 Dice coeffiffifficient 来衡量,分数值越大越好。

读取数据:

 

配置环境:

此次环境是在本地anaconda中配置的,过程中需要安装一些列python库,和bebug一系列的问题。这里简述一些配置环境过程中的问题。

添加conda下载源:

跟pip一样,conda也可以添加一些国内的下载源,这样在下载的时候就非常快,可以参考我的博客添加conda下载源

anaconda创建虚拟环境:

在进行一个新的任务时候,最好新建一个虚拟环境,在新建的虚拟环境进行试验,以免环境太乱,当任务结束的时候虚拟环境还可以进行删除。

创建虚拟环境:可能需要几分钟,这里的python版本可以进行指定

conda create --name Seg python=3.8(在base环境中直接创建即可)

验证是否生成:

打开anaconda prompt输入conda env list

环境创建完成后会在anaconda文件夹中多一个envs文件夹,里面就是添加的环境变量。

激活虚拟环境:

Linux:  source activate your_env_name(虚拟环境名称)

Windows: activate your_env_name(虚拟环境名称)

jupyter notebook打开D盘中的文件:

由于我将文件夹放在了D盘中,而jupyter notebook在打开的时候默认显示C盘中的文件,这时候我们就看不到D盘中的文件,解决方法也很简单,jupyter notebook打开D盘中的文件

这样我们就成功安装了虚拟环境,并用jupyter notebook打开了D盘中的文件。

在jupyter notebook中切换虚拟环境:

进入jupyter notebook发现kernel仍然是原来的虚拟环境,找不到新建的虚拟环境,解决方法如下在jupyter notebook中切换不同的虚拟环境

安装cv2:

conda install --channel https://conda.anaconda.org/menpo opencv
或者pip install opencv-python -i https://pypi.tuna.tsinghua.edu.cn/simple

或者pip install opencv-contrib-python -i https://pypi.tuna.tsinghua.edu.cn/simple

安装albumentations

ModuleNotFoundError: No module named 'albumentations'

解决方案:

pip install albumentations -i https://pypi.tuna.tsinghua.edu.cn/simple

报错:

ERROR: Could not install packages due to an EnvironmentError: [WinError 5] 拒绝访问。: 'D:\\anaconda\\Lib\\site-packages\\cv2\\cv2.cp38-win_amd64.pyd'

Consider using the `--user` option or check the permissions.

解决方案:

pip install --user albumentations -i https://pypi.tuna.tsinghua.edu.cn/simple

安装numpy:

ModuleNotFoundError: No module named 'numpy'

解决办法:conda install numpy

安装pandas

ModuleNotFoundError: No module named 'pandas'

解决办法:conda install pandas

安装tqdm

ModuleNotFoundError: No module named 'tqdm'

解决办法:conda install tqdm

安装matplotlib

ModuleNotFoundError: No module named 'matplotlib'

conda install matplotlib

安装scipy:

ModuleNotFoundError: No module named 'scipy'

解决办法:conda install scipy

安装skimage

ModuleNotFoundError: No module named 'skimage'

解决办法:conda install scikit-image

安装imgaug

ModuleNotFoundError: No module named 'imgaug'

解决办法:conda install imgaug

安装torch:

ModuleNotFoundError: No module named 'torch'

解决办法:conda install pytorch

在jupyter中安装python库:

pip3 install torch -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com

pip3 install torch -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com

安装torchvision:

ModuleNotFoundError: No module named 'torchvision'

解决办法:conda install torchvision

安装python包的时候文件夹权限报错:

在安装Python包的时候可能会出现文件夹权限的错误,解决办法:安装python包的时候文件夹权限报错

报错1:

TypeError: image must be numpy array type

原因:没有读取到图片

这个报错解决了好久,原因是因为路径中出现了中文,没有识别出来,指向了空文件。

train_mask = pd.read_csv('./数据/train_mask.csv', sep='\t', names=['name', 'mask'])

改成英文即可。

报错2:

AttributeError: module 'torchvision.models' has no attribute 'segmentation'

解决办法:

先看一下torchvision的版本是多少,print(torchvision.__version__),输出版本是0.2.2。所以猜测可能原因是版本太低,尝试升级版本。

输入:

pip install --upgrade torchvision==0.5 -i https://pypi.tuna.tsinghua.edu.cn/simple

或者

conda update torchvision

但是报错:

于是尝试手动安装torch,和torchvision库。

参考链接:anaconda手动安装torch1.7.1和torchvision0.8.1

问题即可解决。

报错3:

在代码中,import albumentations as A的时候,出现错误:anaconda服务似乎挂掉了,但是会立刻重启的。解决办法:Jupyter notebook报错:anaconda服务似乎挂掉了,但是会立刻重启的.

报错4:

在开始运行模型的时候报错:RuntimeError: CUDA out of memory. Tried to allocate 64.00 MiB (GPU 0; 4.00 GiB total capacity; 2.41 GiB already allocated; 49.14 MiB free; 2.51 GiB reserved in total by PyTorch)。原因:显存不够。解决办法:改小batch-size

训练结果:

我们发现训练成功,且保存了最佳模型。进行测试后得到tmp文件。上传至天池得分数0.7254。

欢迎关注公众号:一起进步~

 

 

这篇关于零基础入门语义分割-地表建筑物识别 Task1 赛题理解 -学习笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/580650

相关文章

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

使用Python实现批量分割PDF文件

《使用Python实现批量分割PDF文件》这篇文章主要为大家详细介绍了如何使用Python进行批量分割PDF文件功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、架构设计二、代码实现三、批量分割PDF文件四、总结本文将介绍如何使用python进js行批量分割PDF文件的方法

深入理解Apache Airflow 调度器(最新推荐)

《深入理解ApacheAirflow调度器(最新推荐)》ApacheAirflow调度器是数据管道管理系统的关键组件,负责编排dag中任务的执行,通过理解调度器的角色和工作方式,正确配置调度器,并... 目录什么是Airflow 调度器?Airflow 调度器工作机制配置Airflow调度器调优及优化建议最

一文带你理解Python中import机制与importlib的妙用

《一文带你理解Python中import机制与importlib的妙用》在Python编程的世界里,import语句是开发者最常用的工具之一,它就像一把钥匙,打开了通往各种功能和库的大门,下面就跟随小... 目录一、python import机制概述1.1 import语句的基本用法1.2 模块缓存机制1.

深入理解C语言的void*

《深入理解C语言的void*》本文主要介绍了C语言的void*,包括它的任意性、编译器对void*的类型检查以及需要显式类型转换的规则,具有一定的参考价值,感兴趣的可以了解一下... 目录一、void* 的类型任意性二、编译器对 void* 的类型检查三、需要显式类型转换占用的字节四、总结一、void* 的

使用Python将长图片分割为若干张小图片

《使用Python将长图片分割为若干张小图片》这篇文章主要为大家详细介绍了如何使用Python将长图片分割为若干张小图片,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. python需求的任务2. Python代码的实现3. 代码修改的位置4. 运行结果1. Python需求

深入理解Redis大key的危害及解决方案

《深入理解Redis大key的危害及解决方案》本文主要介绍了深入理解Redis大key的危害及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一、背景二、什么是大key三、大key评价标准四、大key 产生的原因与场景五、大key影响与危

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件