基于Jaya优化JAYA前馈神经网络FNN研究(Matlab代码实现)

2024-01-07 15:20

本文主要是介绍基于Jaya优化JAYA前馈神经网络FNN研究(Matlab代码实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

👨‍🎓个人主页:研学社的博客 

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

Jaya算法是目前最新的优化算法之一。算法开始时,首先随机生成包含一定数目个体的初始种
群,个体数目n可以根据问题的复杂程度而词整,仞炯种群中所有个体都含有一定数量的设计变量m,初始值生成公式如式(1)所示。

📚2 运行结果

 

部分代码:

%% 
[val,ind] = min(fopt);
Fes = pop*ind;
disp(['Optimum value = ',num2str(val,10)])
 figure;
 plot(fopt,'LineWidth', 2);
 xlabel('Itteration');
 ylabel('Best Cost');
 legend('JAYA');
 disp(' ' );
% Setting optimized weights and bias in network
net = setwb(net, Best');
% Denormalizaion and Prediction by JAYA_FNN
JAYA_FNN_Pred = ((net(XTest))' * mm) + mn;
YTest = (YTest * mm) + mn;
JAYA_FNN_Execution_Time_Seconds = toc 
% Plotting prediction results
figure;
plot(YTest,'LineWidth',2, 'Marker','diamond', 'MarkerSize',8);
hold on;
plot(FNN_Pred, 'LineWidth',2, 'Marker','x', 'MarkerSize',8);
plot(JAYA_FNN_Pred, 'LineWidth',2, 'Marker','pentagram', 'MarkerSize',8);
title('JAYA Optimization based Feed-Forward Neural Network');
xlabel('Time Interval');
ylabel('Values');
legend('Actual Values', 'FNN Predictions', 'JAYA-FNN Predictions');
hold off;
% Performance Evaluaion of FNN and JAYA-FNN
fprintf('Performance Evaluaion of FNN and JAYA-FNN using Normalized Root Mean Square Error \n');
NRMSE_FNN = (abs( sqrt( mean(mean((FNN_Pred - YTest).^2) )) )) / (max(YTest)-min(YTest))
NRMSE_JAYA_FNN = (abs( sqrt( mean(mean((JAYA_FNN_Pred - YTest).^2) ) ) )) / (max(YTest)-min(YTest))


% Objective Function for minimizing normalized mean square error of FNN by
% updation of nework's weights and biases
function [f] = NMSE(wb, net, input, target)
% wb is the weights and biases row vector obtained from the genetic algorithm.
% It must be transposed when transferring the weights and biases to the network net.
 net = setwb(net, wb');
% The net output matrix is given by net(input). The corresponding error matrix is given by
 error = target - net(input);
% The mean squared error normalized by the mean target variance is
 f = (mean(error.^2)/mean(var(target',1)));
% It is independent of the scale of the target components and related to the Rsquare statistic via
% Rsquare = 1 - NMSEcalc ( see Wikipedia)

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]Wang S, Rao RV, Chen P, Zhang Y, Liu A, Wei L. Abnormal breast detection in mammogram images by feed-forward neural network trained by Jaya algorithm. Fundamenta Informaticae. 2017 Jan 1;151(1-4):191-211.

[2]周麟,郝仁杰,尤权圣.基于多层前馈神经网络算法的房价预测模型[J].中国集体经济,2022(23):42-44.

[3]王璞,俞长海,凌骐.基于Jaya-BP神经网络的混凝土坝参数反演[J].水力发电,2023,49(02):50-54+62.

[4]李秋红.基于改进粒子群算法的前馈神经网络识别用户窃电行为[J].电气技术,2022,23(11):44-48.

🌈4 Matlab代码实现

这篇关于基于Jaya优化JAYA前馈神经网络FNN研究(Matlab代码实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/580361

相关文章

Nginx实现高并发的项目实践

《Nginx实现高并发的项目实践》本文主要介绍了Nginx实现高并发的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录使用最新稳定版本的Nginx合理配置工作进程(workers)配置工作进程连接数(worker_co

python中列表list切分的实现

《python中列表list切分的实现》列表是Python中最常用的数据结构之一,经常需要对列表进行切分操作,本文主要介绍了python中列表list切分的实现,文中通过示例代码介绍的非常详细,对大家... 目录一、列表切片的基本用法1.1 基本切片操作1.2 切片的负索引1.3 切片的省略二、列表切分的高

基于Python实现一个PDF特殊字体提取工具

《基于Python实现一个PDF特殊字体提取工具》在PDF文档处理场景中,我们常常需要针对特定格式的文本内容进行提取分析,本文介绍的PDF特殊字体提取器是一款基于Python开发的桌面应用程序感兴趣的... 目录一、应用背景与功能概述二、技术架构与核心组件2.1 技术选型2.2 系统架构三、核心功能实现解析

Flutter监听当前页面可见与隐藏状态的代码详解

《Flutter监听当前页面可见与隐藏状态的代码详解》文章介绍了如何在Flutter中使用路由观察者来监听应用进入前台或后台状态以及页面的显示和隐藏,并通过代码示例讲解的非常详细,需要的朋友可以参考下... flutter 可以监听 app 进入前台还是后台状态,也可以监听当http://www.cppcn

Python使用PIL库将PNG图片转换为ICO图标的示例代码

《Python使用PIL库将PNG图片转换为ICO图标的示例代码》在软件开发和网站设计中,ICO图标是一种常用的图像格式,特别适用于应用程序图标、网页收藏夹图标等场景,本文将介绍如何使用Python的... 目录引言准备工作代码解析实践操作结果展示结语引言在软件开发和网站设计中,ICO图标是一种常用的图像

Java嵌套for循环优化方案分享

《Java嵌套for循环优化方案分享》介绍了Java中嵌套for循环的优化方法,包括减少循环次数、合并循环、使用更高效的数据结构、并行处理、预处理和缓存、算法优化、尽量减少对象创建以及本地变量优化,通... 目录Java 嵌套 for 循环优化方案1. 减少循环次数2. 合并循环3. 使用更高效的数据结构4

使用Python实现表格字段智能去重

《使用Python实现表格字段智能去重》在数据分析和处理过程中,数据清洗是一个至关重要的步骤,其中字段去重是一个常见且关键的任务,下面我们看看如何使用Python进行表格字段智能去重吧... 目录一、引言二、数据重复问题的常见场景与影响三、python在数据清洗中的优势四、基于Python的表格字段智能去重

Spring AI集成DeepSeek实现流式输出的操作方法

《SpringAI集成DeepSeek实现流式输出的操作方法》本文介绍了如何在SpringBoot中使用Sse(Server-SentEvents)技术实现流式输出,后端使用SpringMVC中的S... 目录一、后端代码二、前端代码三、运行项目小天有话说题外话参考资料前面一篇文章我们实现了《Spring

Nginx中location实现多条件匹配的方法详解

《Nginx中location实现多条件匹配的方法详解》在Nginx中,location指令用于匹配请求的URI,虽然location本身是基于单一匹配规则的,但可以通过多种方式实现多个条件的匹配逻辑... 目录1. 概述2. 实现多条件匹配的方式2.1 使用多个 location 块2.2 使用正则表达式

使用Apache POI在Java中实现Excel单元格的合并

《使用ApachePOI在Java中实现Excel单元格的合并》在日常工作中,Excel是一个不可或缺的工具,尤其是在处理大量数据时,本文将介绍如何使用ApachePOI库在Java中实现Excel... 目录工具类介绍工具类代码调用示例依赖配置总结在日常工作中,Excel 是一个不可或缺的工http://