数学建模学习(90):Jaya优化算法对多元函数寻优

2024-01-07 15:20

本文主要是介绍数学建模学习(90):Jaya优化算法对多元函数寻优,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、算法介绍

算法步骤:

  1. 首先初始化种群个体数量,确定每个个体长度以及终止判据
  2. 找到当前种群下的最优个体 best 和最差个体 worst
  3. 遍历所有个体,根据公式(1)更新个体参数
    在这里插入图片描述

其中,i,j,k分别代表迭代代数,个体的某变量,种群中某个体。该公式是Jaya算法的核心

  1. 判断更新后的个体是否优于更新前的个体,若是,则更新个体,否则保留原个体到下一代
  2. 判断当前最优个体是否满足终止判据,若是则结束程序,否则遍历步骤2-4

二、 案例实现(一)

2.1 目标函数

第一步:导入模块

import numpy as np# Jaya
from pyMetaheuristic.algorithm import victory
from pyMetaheuristic.utils import graphs

第二步:目标函数设置

def easom(variables_values = [0, 0]):x1, x2     = variables_valuesfunc_value = -np.cos(x1) * np.cos(x2) * np.exp(-(x1 - np.pi) ** 2 - (x2 - np.pi) ** 2)return func_valueplot_parameters = {'min_values': (-5, -5),'max_values': (5, 5),'step': (0.1, 0.1),'solution': [],'proj_view': '3D','view': 'notebook'
}
graphs.plot_single_function(target_function = easom, **plot_parameters)

如下:
在这里插入图片描述

2.2 算法实现

第三步:设置算法参数

# jaya - Parameters
parameters = {# 该参数50左右'size': 50,'min_values': (-5, -5),'max_values': (5, 5),# 迭代次数'iterations': 500,'verbose': True
}

第四步:执行算法

jy = victory(target_function = easom, **parameters)

第五步:获取算法最优解

variables = jy[:-1]
minimum   = jy[ -1]
print('变量值为: ', np.around(variables, 4) , ' 最小值为: ', round(minimum, 4) )

如下:

变量值为:  [3.1258 3.1804]  最小值为:  -0.9974

第六步:可视化最优值
在这里插入图片描述

三、案例(二)

我们换一个目标函数,以五维球形函数的最优化计算为例子.

def easom(variables_values):x    = variables_valuesfunc_value = y=sum(x**2 for x in variables_values)return func_value

后续参数类似。。不再重复演示。

四、额外补充

4.1 封装代码

如果你希望改进该算法模块,可以研究修改以下代码:


# Required Libraries
import numpy  as np
import random
import os############################################################################# Function
def target_function():return############################################################################# Function: Initialize Variables
def initial_position(size = 5, min_values = [-5,-5], max_values = [5,5], target_function = target_function):position = np.zeros((size, len(min_values)+1))for i in range(0, size):for j in range(0, len(min_values)):position[i,j] = random.uniform(min_values[j], max_values[j])position[i,-1] = target_function(position[i,0:position.shape[1]-1])return position# Function: Updtade Position by Fitness
def update_bw_positions(position, best_position, worst_position):for i in range(0, position.shape[0]):if (position[i,-1] < best_position[-1]):best_position = np.copy(position[i, :])if (position[i,-1] > worst_position[-1]):worst_position = np.copy(position[i, :])return best_position, worst_position# Function: Search
def update_position(position, best_position, worst_position, min_values = [-5,-5], max_values = [5,5], target_function = target_function):candidate = np.copy(position[0, :])for i in range(0, position.shape[0]):for j in range(0, len(min_values)):a  = int.from_bytes(os.urandom(8), byteorder = "big") / ((1 << 64) - 1)b  = int.from_bytes(os.urandom(8), byteorder = "big") / ((1 << 64) - 1)candidate[j] = np.clip(position[i, j] + a * (best_position[j] - abs(position[i, j])) - b * ( worst_position[j] - abs(position[i, j])), min_values[j], max_values[j] )candidate[-1] = target_function(candidate[:-1])if (candidate[-1] < position[i,-1]):position[i,:] = np.copy(candidate)return position############################################################################# Jaya Function
def victory(size = 5, min_values = [-5,-5], max_values = [5,5], iterations = 50, target_function = target_function, verbose = True):    count              = 0position           = initial_position(size, min_values, max_values, target_function)best_position      = np.copy(position[0, :])best_position[-1]  = float('+inf')worst_position     = np.copy(position[0, :])worst_position[-1] = 0while (count <= iterations): if (verbose == True):print('Iteration = ', count,  ' f(x) = ', best_position[-1])position                      = update_position(position, best_position, worst_position, min_values, max_values, target_function)best_position, worst_position = update_bw_positions(position, best_position, worst_position)count                         = count + 1     return best_position 

4.2 算法论文

http://www.growingscience.com/ijiec/Vol7/IJIEC_2015_32.pdf

这篇关于数学建模学习(90):Jaya优化算法对多元函数寻优的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/580360

相关文章

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

MySQL高级查询之JOIN、子查询、窗口函数实际案例

《MySQL高级查询之JOIN、子查询、窗口函数实际案例》:本文主要介绍MySQL高级查询之JOIN、子查询、窗口函数实际案例的相关资料,JOIN用于多表关联查询,子查询用于数据筛选和过滤,窗口函... 目录前言1. JOIN(连接查询)1.1 内连接(INNER JOIN)1.2 左连接(LEFT JOI

MySQL中FIND_IN_SET函数与INSTR函数用法解析

《MySQL中FIND_IN_SET函数与INSTR函数用法解析》:本文主要介绍MySQL中FIND_IN_SET函数与INSTR函数用法解析,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一... 目录一、功能定义与语法1、FIND_IN_SET函数2、INSTR函数二、本质区别对比三、实际场景案例分

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

C/C++错误信息处理的常见方法及函数

《C/C++错误信息处理的常见方法及函数》C/C++是两种广泛使用的编程语言,特别是在系统编程、嵌入式开发以及高性能计算领域,:本文主要介绍C/C++错误信息处理的常见方法及函数,文中通过代码介绍... 目录前言1. errno 和 perror()示例:2. strerror()示例:3. perror(