Enhanced Jaya algorithm(一种增强的Jaya算法)

2024-01-07 15:20

本文主要是介绍Enhanced Jaya algorithm(一种增强的Jaya算法),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一种增强的Jaya算法:

参考文献:`Enhanced Jaya algorithm: A simple but efficient optimization method for constrained engineering design problems.


Jaya算法:

Jaya算法是由印度学者Venkata Rao 于2016年首次提出。该算法的特点在于无算法相关的参数且只有进化策略。算法首先进行种群初始化,其数学表达式如下:
x i = l + ( u − l ) × λ x_{i} =l+\left ( u-l \right ) \times \lambda xi=l+(ul)×λ
式中, l 和 u 表示变量的取值下界和上界, λ 表示服从均匀分布的随机数。 式中,l和u表示变量的取值下界和上界,\lambda 表示服从均匀分布的随机数。 式中,lu表示变量的取值下界和上界,λ表示服从均匀分布的随机数。
进化策略公式如下:
v i = x i + λ 1 × ( x B e s t − ∣ x i ∣ ) − λ 2 × ( x W o r s t − ∣ x i ∣ ) , i = 1 , 2 , ⋯ , N v_{i} =x_{i} +\lambda _{1} \times \left ( x_{Best}-\left | x_{i} \right | \right ) -\lambda _{2}\times \left ( x_{Worst}-\left | x_{i} \right | \right ),i=1,2,\cdots ,N vi=xi+λ1×(xBestxi)λ2×(xWorstxi),i=1,2,,N
式中, λ 1 , λ 2 表示两个随机数,其取值范围为 [ 0 , 1 ] ; x B e s t 表示当前种群个体中的最优个体; x W o r s t 表示当前种群个体中的最差个体; N 表示种群个体数目 式中,\lambda {1} ,\lambda {2}表示两个随机数,其取值范围为[0,1]; x_{Best}表示当前种群个体中的最优个体;x_{Worst}表示当前种群个体中的最差个体;N表示种群个体数目 式中,λ1,λ2表示两个随机数,其取值范围为[0,1]xBest表示当前种群个体中的最优个体;xWorst表示当前种群个体中的最差个体;N表示种群个体数目

接着,利用贪婪策略,选择进入下一次迭代的种群个体,其数学表达式如下:
x i = { v i , i f f ( v i ) ≤ f ( x i ) x i i f f ( v i ) > f ( x i ) x_{i} =\left\{\begin{matrix}v_{i},if f\left ( v_{i} \right ) \le f\left ( x_{i} \right ) & \\x_{i} if f\left ( v_{i} \right ) > f\left ( x_{i} \right ) & \end{matrix}\right. xi={vi,iff(vi)f(xi)xiiff(vi)>f(xi)


增强的Jaya算法(EJaya):

EJaya算法细化Jaya算法的进化策略,EJaya算法包含一个全局搜索策略和局部搜索策略。
(1)局部搜索策略:
通过引入种群个体的平均解,结合种群个体中的最优个体和最差个体分别计算局部上吸引点和局部下吸引点,并以此为基础提出一种新的种群局部进化策略。
种群个体平均解: M = 1 N ∑ i = 1 N x i , i = 1 , 2 , ⋯ , N 种群个体平均解:M=\frac{1}{N} \sum_{i=1}^{N} x_{i} ,i=1,2,\cdots ,N 种群个体平均解:M=N1i=1Nxi,i=1,2,,N
局部上吸引点: P u = λ 3 × x B e s t + ( 1 − λ 3 ) × M 局部上吸引点:P_{u} =\lambda _{3}\times x_{Best} +\left ( 1-\lambda _{3} \right ) \times M 局部上吸引点:Pu=λ3×xBest+(1λ3)×M
局部下吸引点: P l = λ 4 × x W o r s t + ( 1 − λ 4 ) × M 局部下吸引点:P_{l} =\lambda _{4}\times x_{Worst} +\left ( 1-\lambda _{4} \right ) \times M 局部下吸引点:Pl=λ4×xWorst+(1λ4)×M
新的局部进化策略: v i = x i + λ 5 × ( P u − x i ) − λ 6 × ( P l − x i ) , i = 1 , 2 , ⋯ , N 新的局部进化策略:v_{i} =x_{i} +\lambda _{5} \times \left ( P_{u}-x_{i} \right ) -\lambda _{6}\times \left ( P_{l}-x_{i} \right ),i=1,2,\cdots ,N 新的局部进化策略:vi=xi+λ5×(Puxi)λ6×(Plxi),i=1,2,,N
(2)全局进化策略:
引入历史种群个体来扩大搜索空间,提高算法的全局搜索性能。历史个体生成的数学表示如下:
X o l d = { X , i f P s w i t h ≤ 0.5 X o l d , i f P s w i t h > 0.5 X_{old} =\left\{\begin{matrix}X,ifP_{swith} \le 0.5 & \\X_{old} ,ifP_{swith} > 0.5 & \end{matrix}\right. Xold={X,ifPswith0.5Xold,ifPswith>0.5
X o l d = p e r m u t i n g ( X o l d ) X_{old}=permuting\left ( X_{old}\right ) Xold=permuting(Xold)
式中, P s w i t h 表示一个 [ 0 , 1 ] 内的随机数 式中,P_{swith}表示一个[0,1]内的随机数 式中,Pswith表示一个[0,1]内的随机数

EJaya算法的流程图

在这里插入图片描述

function [BestValue,XTarget,BestCost]=EJAYA(fobj,nPop,nVar,VarMin,VarMax,MaxIt)
% 参考文献:Enhanced Jaya algorithm: A simple but efficient optimization method for constrained engineering design problems
%%输入参数
%%fhd----------------目标方程
%%nPop---------------种群个体数目 
%%nVar---------------变量数目
%%VarMin-------------变量取值的下界
%%VarMax-------------变量取值的上界
%%MaxIt--------------算法的最大迭代次数
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%输出参数
%%BestCost-----------每次迭代的最优适应度值(用于绘制迭代收敛曲线)
%%BestValue----------最优的适应度值
%%XTarget------------最优解(个体位置)
for i=1:nPopX(i,:)=VarMin+rand(1,nVar).*(VarMax-VarMin); %种群初始化f(i) = fobj(X(i,:));
end
gen=1;% 初始化算法迭代次数
[BestCost(1),ind]=min(f);
XTarget=X(ind,:);
old=X;% 初始化历史种群
% 主要迭代步骤
while(gen+1 <= MaxIt) [row,col]=size(X);[~,tindex]=min(f);Best=X(tindex,:); [~,windex]=max(f);worst=X(windex,:);xnew=zeros(row,col);fi1=rand;go1=1-fi1;fi2=rand;go2=1-fi2;ULP=(go1*Best+fi1*mean(X)-(X(i,:))); %Eq.(4)DLP=(go2*worst+fi2*mean(X)-(X(i,:))); %Eq(6)gl=rand;if gl<0.5old=X; %Eq.(8)elseold=old(randperm(nPop),:); %Eq.(9) endfor i=1:row fi=rand;if fi<0.5xnew(i,:)=(X(i,:))+rand(1,nVar).*ULP-rand(1,nVar).*DLP;%Eq.(7)elsexnew(i,:)=(X(i,:))+randn.*(old(i,:)-(X(i,:))) ; %Eq.(10)endendfor i=1:rowxnew(i,:) = max(min(xnew(i,:),VarMax),VarMin);% 边界检查fnew(i,:) = fobj(xnew(i,:));endfor i=1:nPopif(fnew(i)<f(i))X(i,:) = xnew(i,:);f(i) = fnew(i);endendgen = gen+1;[BestCost(gen),ind]=min(f);XTarget=X(ind);
end
BestValue=min(f);
end

这篇关于Enhanced Jaya algorithm(一种增强的Jaya算法)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/580354

相关文章

代码随想录算法训练营:12/60

非科班学习算法day12 | LeetCode150:逆波兰表达式 ,Leetcode239: 滑动窗口最大值  目录 介绍 一、基础概念补充: 1.c++字符串转为数字 1. std::stoi, std::stol, std::stoll, std::stoul, std::stoull(最常用) 2. std::stringstream 3. std::atoi, std

人工智能机器学习算法总结神经网络算法(前向及反向传播)

1.定义,意义和优缺点 定义: 神经网络算法是一种模仿人类大脑神经元之间连接方式的机器学习算法。通过多层神经元的组合和激活函数的非线性转换,神经网络能够学习数据的特征和模式,实现对复杂数据的建模和预测。(我们可以借助人类的神经元模型来更好的帮助我们理解该算法的本质,不过这里需要说明的是,虽然名字是神经网络,并且结构等等也是借鉴了神经网络,但其原型以及算法本质上还和生物层面的神经网络运行原理存在

大林 PID 算法

Dahlin PID算法是一种用于控制和调节系统的比例积分延迟算法。以下是一个简单的C语言实现示例: #include <stdio.h>// DALIN PID 结构体定义typedef struct {float SetPoint; // 设定点float Proportion; // 比例float Integral; // 积分float Derivative; // 微分flo

LeetCode 算法:二叉树的中序遍历 c++

原题链接🔗:二叉树的中序遍历 难度:简单⭐️ 题目 给定一个二叉树的根节点 root ,返回 它的 中序 遍历 。 示例 1: 输入:root = [1,null,2,3] 输出:[1,3,2] 示例 2: 输入:root = [] 输出:[] 示例 3: 输入:root = [1] 输出:[1] 提示: 树中节点数目在范围 [0, 100] 内 -100 <= Node.

【Java算法】滑动窗口 下

​ ​    🔥个人主页: 中草药 🔥专栏:【算法工作坊】算法实战揭秘 🦌一.水果成篮 题目链接:904.水果成篮 ​ 算法原理 算法原理是使用“滑动窗口”(Sliding Window)策略,结合哈希表(Map)来高效地统计窗口内不同水果的种类数量。以下是详细分析: 初始化:创建一个空的哈希表 map 用来存储每种水果的数量,初始化左右指针 left

ROS2从入门到精通4-4:局部控制插件开发案例(以PID算法为例)

目录 0 专栏介绍1 控制插件编写模板1.1 构造控制插件类1.2 注册并导出插件1.3 编译与使用插件 2 基于PID的路径跟踪原理3 控制插件开发案例(PID算法)常见问题 0 专栏介绍 本专栏旨在通过对ROS2的系统学习,掌握ROS2底层基本分布式原理,并具有机器人建模和应用ROS2进行实际项目的开发和调试的工程能力。 🚀详情:《ROS2从入门到精通》 1 控制插

算法与数据结构面试宝典——回溯算法详解(C#,C++)

文章目录 1. 回溯算法的定义及应用场景2. 回溯算法的基本思想3. 递推关系式与回溯算法的建立4. 状态转移方法5. 边界条件与结束条件6. 算法的具体实现过程7. 回溯算法在C#,C++中的实际应用案例C#示例C++示例 8. 总结回溯算法的主要特点与应用价值 回溯算法是一种通过尝试各种可能的组合来找到所有解的算法。这种算法通常用于解决组合问题,如排列、组合、棋盘游

【图像识别系统】昆虫识别Python+卷积神经网络算法+人工智能+深度学习+机器学习+TensorFlow+ResNet50

一、介绍 昆虫识别系统,使用Python作为主要开发语言。通过TensorFlow搭建ResNet50卷积神经网络算法(CNN)模型。通过对10种常见的昆虫图片数据集(‘蜜蜂’, ‘甲虫’, ‘蝴蝶’, ‘蝉’, ‘蜻蜓’, ‘蚱蜢’, ‘蛾’, ‘蝎子’, ‘蜗牛’, ‘蜘蛛’)进行训练,得到一个识别精度较高的H5格式模型文件,然后使用Django搭建Web网页端可视化操作界面,实现用户上传一

【数据结构与算法 经典例题】使用队列实现栈(图文详解)

💓 博客主页:倔强的石头的CSDN主页               📝Gitee主页:倔强的石头的gitee主页    ⏩ 文章专栏:《数据结构与算法 经典例题》C语言                                   期待您的关注 ​​ 目录  一、问题描述 二、前置知识 三、解题思路 四、C语言实现代码 🍃队列实现代码:

算法11—判断一个树是不是二叉查询树

问题: 给定一个二叉树,判断它是否是二叉查询树。 思路: 要判断是否是二叉查询树,标准就是看每一个节点是否满足:1、左节点及以下节点的值比它小;2、右节点及以下节点的值比它大。当然,前提是子节点都存在的情况。所以,我们需要从根节点不断向下递归,只要所有节点都满足,那么就是BST,否则,就不是。 代码: [java]  view plain copy pri