天池大赛——街景字符编码识别比赛(零基础入门CV赛事)

2024-01-07 12:48

本文主要是介绍天池大赛——街景字符编码识别比赛(零基础入门CV赛事),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 赛题理解

1.1 题目内容

识别街景图像中的门牌号。

1.2 数据集

数据集来自Google街景图像中的门牌号数据集(The Street View House Numbers Dataset, SVHN),并根据一定方式采样得到比赛数据集。其中训练集30000张图片,检验集10000张图片,测试集A和B各40000张图片。图片大小不一,为三色RGB图片。标记信息为图片中各个数字的位置框和数字信息。
数据集样本展示

1.3 解题思路:

方法一:将问题看作定长字符串的分类问题,使用深度神经网络直接预测各个数字。
方法二:先对字符进行检测,再进行分类。

2 数据读取与数据扩增

2.1 数据读取

赛题举办方提供的数据包括由30000张图片组成的训练集,10000张图片组成的检验集和40000张图片组成的测试集A,图片格式为png格式。数据标签为json格式。
数据读取方式:torch.utils.data.DataLoader, PIL.Image, glob, json库的使用

# 数据标签的 json格式读取,转化为字典格式
import json
train_json = json.load(open('mchar_train.json'))# 读取训练图片的路径信息
import glob
train_path = glob.glob('./input/mchar_train/*.png')
train_path.sort()# 数据读取
class SVHNDataset(Dataset):def __init__(self, img_path, img_label, transform=None):self.img_path = img_pathself.img_label = img_labelif transform is not None:self.transform = transformelse:self.transform = Nonedef __getitem__(self, index):img = Image.open(self.img_path[index]).convert('RGB')if self.transform is not None:img = self.transform(img)# 设置最⻓长的字符⻓长度为4个lbl = np.array(self.img_label[index], dtype=np.int)lbl = list(lbl) + (4 - len(lbl)) * [10]return img, torch.from_numpy(np.array(lbl[:4]))def __len__(self):return len(self.img_path)# 这里暂时不使用标签中的图片位置信息,只使用类别信息
train_label = [train_json[x]['label'] for x in train_json]# 数据扩充
import torchvision.transforms as transforms# torch中的数据读取方式,利用torch.utils.data.DataLoader 来实现
# transforms 为数据扩充方法
train_loader = torch.utils.data.DataLoader(SVHNDataset(train_path, train_label,transforms.Compose([、# 缩放到固定尺度transforms.Resize((64, 128)),# 随机裁剪transforms.RandomCrop((60, 120)),# 颜色变换transforms.ColorJitter(0.3, 0.3, 0.2),# 随机旋转transforms.RandomRotation(5),# 转化为pytorch的tensortransforms.ToTensor(),# 图片像素归一化transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])),batch_size=40,shuffle=True,num_workers=0,
)

2.2 数据扩充方法

对于图片的数据扩充方法,有尺度变化、随机裁剪、中心裁剪、随机旋转、水平翻转、垂直翻转、颜色对比度变换等。对于数字识别而言,由于数字6和数字9的相似性,不可以使用随机翻转的方法。在上述代码中,使用了随机裁剪、颜色变换、随机旋转这三种数据扩充方法。

3 字符识别模型

3.1 尝试一:定长字符识别模型

对于数据集中的图片,大多数图片的标签数字数量小于5。训练集中的数字标签数字数量统计结果如下:
含有1个数字:4636, 占比15.45%;
含有2个数字:16262, 占比54.21%;
含有3个数字:7813, 占比26.04%;
含有4个数字:1280, 占比4.27%;
含有5个数字:8, 占比0.03%;
含有6个数字,1, 占比0.00%。
对于定长字符识别模型而言,其做法是设定字符长度,将不定长的字符补全(在10个数字类别之外,补充背景类别)。由于绝大多数图片的字符数量小于5, 因此设定定长字符的长度为4。
同时,模型使用了ResNet预训练模型。在ResNet模型的最后一层,并联接上4个子分支,每个分支由两个全连接层组成,分别预测对应位置的数字。
在使用不同ResNet主干网络的情况下,模型取得了不同的预测效果。在使用相同数据增强方法的情况下,使用ResNet18预训练模型,最终得分为0.52;ResNet52 得分为 0.63; ResNet101得分为0.69。在模型训练的过程中出现了过拟合的现象,训练集的误差不断减小,而检验集上的误差最后却保持在一定范围。为了缓解这样的问题,使用额外的数据增强方法对训练集的数据进行了扩增。包括高斯模糊和加入随机噪声等。最后在使用ResNet101主干网络的情况下,模型得分达到了0.73。

3.2 尝试二:两个定长字符识别模型的组合

在使用定长字符模型时,模型最后的4个子分支分别预测不同位置的数字。但是由于不同位置数字出现频率并不相同,比如所有图片都存在第1位数字,因此预测第1位数字的子分支应该可以取得比较准确的预测结果;而对于预测第4位数字的子分支,由于95.7%的标签标记为背景,其预测的效果可能是有问题的。在这样的分析下,从预测效率上来看,可能出现的情况是:子分支1>子分支2>子分支3>子分支4。
因此,一个比较自然的想法是:训练两个模型,其中一个模型从左往右预测数字,另一个模型从右往左预测数字,最后再综合两个模型的预测结果,确定最后的结果。
初步的实验表明:该方法似乎不起效果。。

3.3 尝试三:使用检测+预测的思路

由于数据标签同时包含类别和位置信息,因此可以使用检测+预测的思路来做。同样包括两种方法,第一种方法是同时做检测和类别预测;第二种方法是先做检测,将数字框识别出来,再对图像做裁剪进行分类预测。目前尝试使用了yolov3和yolov4模型来进行预测。初步的实验结果显示模型预测效果极差,基本不具有预测功能。。。

3.4 其它方法

其它方法还包括不定长字符识别方法,其中典型的代表是CTPN;以及两阶段的检测模型,比如Faster RCNN。之后计划将这两个模型都实现一遍。

4 模型训练与验证

定义型的训练函数和验证函数,设置相应的参数,进行训练。其中训练函数train()包含梯度反向传播和参数更新。

def train(train_loader, model, criterion, optimizer):# 切换模型为训练模式model.train()train_loss = []T0 = time.time()for i, (input, target) in enumerate(train_loader):if use_cuda:input = input.cuda()target = target.cuda()c0, c1, c2, c3 = model(input)target = target.long()loss = criterion(c0, target[:, 0]) + \criterion(c1, target[:, 1]) + \criterion(c2, target[:, 2]) + \criterion(c3, target[:, 3])optimizer.zero_grad()loss.backward()optimizer.step()if i % 100 == 0:TT = time.time()print(loss.item(), TT-T0)T0 = time.time()train_loss.append(loss.item())return np.mean(train_loss)def validate(val_loader, model, criterion):# 切换模型为预测模型model.eval()val_loss = []# 不不记录模型梯度信息with torch.no_grad():for i, (input, target) in enumerate(val_loader):if use_cuda:input = input.cuda()target = target.cuda()c0, c1, c2, c3 = model(input)target = target.long()loss = criterion(c0, target[:, 0]) + \criterion(c1, target[:, 1]) + \criterion(c2, target[:, 2]) + \criterion(c3, target[:, 3]) val_loss.append(loss.item())return np.mean(val_loss)

模型训练和验证。将验证结果最好的模型加以保存。

model = SVHN_Model1()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), 0.001)
best_loss = 1000.0
use_cuda = True
if use_cuda:model = model.cuda()
for epoch in range(5):train_loss = train(train_loader, model, criterion, optimizer)val_loss = validate(val_loader, model, criterion)val_label = [''.join(map(str, x)) for x in val_loader.dataset.img_label]val_predict_label = predict(val_loader, model, 1)val_predict_label = np.vstack([val_predict_label[:, :11].argmax(1),val_predict_label[:, 11:22].argmax(1),val_predict_label[:, 22:33].argmax(1),val_predict_label[:, 33:44].argmax(1),]).Tval_label_pred = []for x in val_predict_label:val_label_pred.append(''.join(map(str, x[x!=10])))val_char_acc = np.mean(np.array(val_label_pred) == np.array(val_label))print('Epoch: {0}, Train loss: {1} \t Val loss: {2}'.format(epoch, train_loss, val_loss))print(val_char_acc)# 记录下验证集精度if val_loss < best_loss:best_loss = val_losstorch.save(model.state_dict(), './model.pt')

5 模型集成

对于模型集成,使用了两种方法。第一种方法是在训练过程中保留了两个“最优模型”,分别对应于检验集损失最少和准确率最高两种情形,最后将两个“最优模型”集成,进行预测。

# 记录下验证集精度
if val_loss < best_loss:best_loss = val_losstorch.save(model.state_dict(), './weights/model.pt')
if val_acc > best_acc:best_acc = val_acctorch.save(model.state_dict(), './weights/model_acc.pt')

第二种方法在预测的时候,通过transforms.RandomCrop方法,预测10次,将10次预测结果进行集成。

def predict2(test_loader, model1, model2, tta=10):model1.eval()model2.eval()test_pred_tta = True# TTA 次数for _ in range(tta):test_pred = []with torch.no_grad():for i, (input, target) in enumerate(test_loader):if use_cuda:input = input.cuda()c0, c1, c2, c3 = model1(input)output = np.concatenate([c0.data.cpu().numpy(),c1.data.cpu().numpy(),c2.data.cpu().numpy(),c3.data.cpu().numpy()], axis=1)c0, c1, c2, c3 = model1(input)output2 = np.concatenate([c0.data.cpu().numpy(),c1.data.cpu().numpy(),c2.data.cpu().numpy(),c3.data.cpu().numpy()], axis=1)test_pred.append(output+output2)test_pred = np.vstack(test_pred)if test_pred_tta is None:test_pred_tta = test_predelse:test_pred_tta += test_predreturn test_pred_tta

最后,在通过设置动态学习率,补充额外的数据增强方法和进行模型集成之后,预测得分达到了0.84。

这篇关于天池大赛——街景字符编码识别比赛(零基础入门CV赛事)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/579960

相关文章

Java 字符数组转字符串的常用方法

《Java字符数组转字符串的常用方法》文章总结了在Java中将字符数组转换为字符串的几种常用方法,包括使用String构造函数、String.valueOf()方法、StringBuilder以及A... 目录1. 使用String构造函数1.1 基本转换方法1.2 注意事项2. 使用String.valu

Go语言使用Buffer实现高性能处理字节和字符

《Go语言使用Buffer实现高性能处理字节和字符》在Go中,bytes.Buffer是一个非常高效的类型,用于处理字节数据的读写操作,本文将详细介绍一下如何使用Buffer实现高性能处理字节和... 目录1. bytes.Buffer 的基本用法1.1. 创建和初始化 Buffer1.2. 使用 Writ

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

数论入门整理(updating)

一、gcd lcm 基础中的基础,一般用来处理计算第一步什么的,分数化简之类。 LL gcd(LL a, LL b) { return b ? gcd(b, a % b) : a; } <pre name="code" class="cpp">LL lcm(LL a, LL b){LL c = gcd(a, b);return a / c * b;} 例题:

Java 创建图形用户界面(GUI)入门指南(Swing库 JFrame 类)概述

概述 基本概念 Java Swing 的架构 Java Swing 是一个为 Java 设计的 GUI 工具包,是 JAVA 基础类的一部分,基于 Java AWT 构建,提供了一系列轻量级、可定制的图形用户界面(GUI)组件。 与 AWT 相比,Swing 提供了许多比 AWT 更好的屏幕显示元素,更加灵活和可定制,具有更好的跨平台性能。 组件和容器 Java Swing 提供了许多

【IPV6从入门到起飞】5-1 IPV6+Home Assistant(搭建基本环境)

【IPV6从入门到起飞】5-1 IPV6+Home Assistant #搭建基本环境 1 背景2 docker下载 hass3 创建容器4 浏览器访问 hass5 手机APP远程访问hass6 更多玩法 1 背景 既然电脑可以IPV6入站,手机流量可以访问IPV6网络的服务,为什么不在电脑搭建Home Assistant(hass),来控制你的设备呢?@智能家居 @万物互联

poj 2104 and hdu 2665 划分树模板入门题

题意: 给一个数组n(1e5)个数,给一个范围(fr, to, k),求这个范围中第k大的数。 解析: 划分树入门。 bing神的模板。 坑爹的地方是把-l 看成了-1........ 一直re。 代码: poj 2104: #include <iostream>#include <cstdio>#include <cstdlib>#include <al