关于CNN卷积神经网络与Conv2D标准卷积的重要概念

2024-01-07 09:20

本文主要是介绍关于CNN卷积神经网络与Conv2D标准卷积的重要概念,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

温故而知新,可以为师矣!

一、参考资料

深入解读卷积网络的工作原理(附实现代码)
深入解读反卷积网络(附实现代码)
Wavelet U-net进行微光图像处理
卷积知识点
CNN网络的设计论:NAS vs Handcraft

二、卷积神经网络(CNN)相关介绍

1. CNN网络简介

1.1 CNN特征提取

学习输入到输出的映射,并对映射关系加以训练,训练好的模型也具备了这种映射能力。浅层网络一般学习的是边缘、颜色、亮度等,较深层网络学习的是纹理,而更深层的网络学习的是具有一些辨识度的特征,所以卷积神经网络学习的特征逐渐抽象到更高级别。

1.2 CNN网络优点

  1. 参数共享。对输入图像进行卷积操作时,对不同的区域都会共享同一个卷积核,即共享同一组参数,使得网络的参数量才会大大减少;

  2. 稀疏性连接。进行卷积操作之后,输出图像的任何一个区域只跟输入图像的一部分有关。

2. CNN网络结构

CNN网络一般由输入层、卷积层(convolution layer)、激活层、 池化层(pooling layer)和全连接层(fully-connected layer,FC layer)五部分组成。其中,最核心的层包括:

  • convolution layer:提取spacial information
  • pooling layer:降低图像或特征图分辨率,减少运算量并获得semantic information
  • FC layer:回归目标。

注意:随着时代的改变,虽然pooling layer时常被较大stride的convolution取代,global average pooling 与1x1 convolution也时不时代替了 FC layer,这个大思路依然是大致没变的。

3. 卷积层

如果没有特殊说明,卷积指的是标准卷积(Conv2D),卷积操作指的是标准卷积的正向卷积过程

卷积层功能:一张图像在计算机中自动识别为一个二维矩阵。卷积层对输入图像进行特征提取,其内部是由多个卷积核组成的,多个卷积核构成滤波器。

卷积层参数:卷积核大小、步长和填充方式。

卷积层重要特性:权值共享。对于任意一张图像,用一个滤波器按照先横后竖的顺序去覆盖这张图,因为这张图像的每个区域都是被同一个滤波器覆盖,所以各个 区域的权重一样。

多卷积层:一层卷积学到的特征往往是局部的,而卷积层数越多,学到的特征就越全局化。实际应用中,往往使用多层卷积,然后再使用全连接层进行训练。

3.1 卷积核(kernel/filters)

kernel称为卷积核,filters称为滤波器,多个kernel构成filters。卷积核的数量,也就是卷积核通道数。例如,卷积核的尺寸为: K ∗ K ∗ 3 ∗ M K*K*3*M KK3M,单个卷积核尺寸为: K ∗ K ∗ 3 K*K*3 KK3,卷积核的数量为: M M M,即表示通道数。

在TensorFlow中叫filters,在keras中叫kernel,不同文献有不同的叫法,在这里统一叫做卷积核kernel,一般kernel的大小(height*width)为1X1,3X3,5X5,7X7。

卷积核与特征(特征图)的关系:不同的卷积核可以提取不同的特征,一个卷积核只能提取一种特征,32个卷积核就可以提取32种特征。通过卷积操作,一个卷积核对应输出一维特征图,多个卷积核对应输出多维特征图,维度也称为特征图的深度,即对应特征图通道数
在这里插入图片描述

3.2 卷积操作

卷积操作是基于卷积的数学运算,可以将卷积核看成 一个二维数字矩阵,输入图像与卷积核进行卷积后就得到了特征图。先在输入图 像的某一个区域覆盖卷积核,然后将卷积核中的每一个数值与输入图像相应位置像素的数值相乘,把乘积累加起来,得到的和便是输出图像对应位置中目标像素 的数值,多次重复此操作直到输入图像中所有区域被卷积核覆盖完整。
在这里插入图片描述

3.3 卷积操作的数学原理

定义一个尺寸为 4×4 的输入矩阵 input
i n p u t = [ x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 x 11 x 12 x 13 x 14 x 15 x 16 ] \left.input=\left[\begin{array}{cccc}x_1&x_2&x_3&x_4\\x_5&x_6&x_7&x_8\\x_9&x_{10}&x_{11}&x_{12}\\x_{13}&x_{14}&x_{15}&x_{16}\end{array}\right.\right] input= x1x5x9x13x2x6x10x14x3x7x11x15x4x8x12x16
一个尺寸为3×3 的标准卷积核 kernel
k e r n e l = [ w 0 , 0 w 0 , 1 w 0 , 2 w 1 , 0 w 1 , 1 w 1 , 2 w 2 , 0 w 2 , 1 w 2 , 2 ] kernel=\begin{bmatrix}w_{0,0}&w_{0,1}&w_{0,2}\\w_{1,0}&w_{1,1}&w_{1,2}\\w_{2,0}&w_{2,1}&w_{2,2}\end{bmatrix} kernel= w0,0w1,0w2,0w0,1w1,1w2,1w0,2w1,2w2,2
令步长 s t r i d e s = 1 strides=1 strides=1,填充 p a d d i n g = 0 padding=0 padding=0 ,即 i = 4 , k = 3 , s = 1 , p = 0 i=4,k=3,s=1,p=0 i=4,k=3,s=1,p=0 ,则按照 公式 ( 1 ) 公式(1) 公式(1) 计算可得尺寸为 2×2的输出矩阵 o u t p u t output output
o u t p u t = [ y 0 y 1 y 2 y 3 ] output=\begin{bmatrix}y_0&y_1\\y_2&y_3\end{bmatrix} output=[y0y2y1y3]
这里,我们换一个表达方式,我们将输入矩阵 input 和输出矩阵 output 展开成列向量 X 和列向量 Y ,那么向量 X 和向量 Y 的尺寸就分别是 16×14×1,可以分别用如下公式表示:

把输入矩阵 input 展开成一个16×1列向量 X X X
X = [ x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 x 11 x 12 x 13 x 14 x 15 x 16 ] T \begin{array}{llllllllllll}X=[x_{1}&x_{2}&x_{3}&x_{4}&x_{5}&x_{6}&x_{7}&x_{8}&x_{9}&x_{10}&x_{11}&x_{12}&x_{13}&x_{14}&x_{15}&x_{16}]^T\end{array} X=[x1x2x3x4x5x6x7x8x9x10x11x12x13x14x15x16]T
把输出矩阵 o u t p u t output output 展开成一个 4×1列向量 Y Y Y
Y = [ y 1 y 2 y 3 y 4 ] T Y=\begin{bmatrix}y_1&y_2&y_3&y_4\end{bmatrix}^T Y=[y1y2y3y4]T
再用矩阵运算来描述标准卷积运算,这里使用矩阵 C 来表示标准卷积核矩阵:
Y = C X Y=CX Y=CX
经过推导,我们可以得到这个稀疏矩阵 C 的尺寸为 4×16
C = [ u 0 , 0 w 0 , 1 w 0 , 2 0 w 1 , 0 w 1 , 1 w 1 , 2 0 w 2 , 0 w 2 , 1 w 2 , 3 0 0 0 0 0 0 w 0 , 0 w 0 , 1 w 0 , 2 0 w 1 , 0 w 1 , 1 w 1 , 2 0 w 2 , 0 w 2 , 1 w 2 , 2 0 0 0 0 0 0 0 0 w 0 , 0 w 0 , 1 w 0 , 2 0 w 1 , 0 w 1 , 1 w 1 , 2 0 w 2 , 0 w 2 , 1 w 2 , 2 0 0 0 0 0 0 w 0 , 0 w 0 , 1 w 0 , 2 0 w 1 , 0 w 1 , 1 w 1 , 2 0 w 2 , 0 w 2 , 1 w 2 , 2 ] C=\begin{bmatrix}u_{0,0}&w_{0,1}&w_{0,2}&0&w_{1,0}&w_{1,1}&w_{1,2}&0&w_{2,0}&w_{2,1}&w_{2,3}&0&0&0&0&0\\0&w_{0,0}&w_{0,1}&w_{0,2}&0&w_{1,0}&w_{1,1}&w_{1,2}&0&w_{2,0}&w_{2,1}&w_{2,2}&0&0&0&0\\0&0&0&0&w_{0,0}&w_{0,1}&w_{0,2}&0&w_{1,0}&w_{1,1}&w_{1,2}&0&w_{2,0}&w_{2,1}&w_{2,2}&0\\0&0&0&0&0&w_{0,0}&w_{0,1}&w_{0,2}&0&w_{1,0}&w_{1,1}&w_{1,2}&0&w_{2,0}&w_{2,1}&w_{2,2}\end{bmatrix} C= u0,0000w0,1w0,000w0,2w0,1000w0,200w1,00w0,00w1,1w1,0w0,1w0,0w1,2w1,1w0,2w0,10w1,20w0,2w2,00w1,00w2,1w2,0w1,1w1,0w2,3w2,1w1,2w1,10w2,20w1,200w2,0000w2,1w2,000w2,2w2,1000w2,2
上述矩阵运算如下图所示:
在这里插入图片描述

3.4 卷积计算公式

卷积计算的输入输出特征图尺寸的对应关系如下:
o = ⌊ i + 2 p − k s ⌋ + 1 i = size of input o = size of output p = p a d d i n g k = size of kernel s = s t r i d e s ( 1 ) o=\left\lfloor\frac{i+2p-k}{s}\right\rfloor+1 \quad \begin{array}{l} \\i=\textit{size of input}\\o=\textit{size of output}\\p=padding\\k=\textit{size of kernel}\\s=strides\end{array}\quad (1) o=si+2pk+1i=size of inputo=size of outputp=paddingk=size of kernels=strides(1)

其中, ⌊ ⋅ ⌋ \left\lfloor\cdot\right\rfloor 表示向下取整符号。

3.5 卷积参数量和计算量

卷积的三种模式:full, same, valid
卷积中参数量和计算量
卷积神经网络中的参数计算
理解分组卷积和深度可分离卷积如何降低参数量
网络解析(一):LeNet-5详解
图像识别-AlexNet网络结构详解
抽丝剥茧,带你理解转置卷积(反卷积)
深度学习中不同类型卷积的综合介绍:2D卷积、3D卷积、转置卷积、扩张卷积、可分离卷积、扁平卷积、分组卷积、随机分组卷积、逐点分组卷积等pytorch代码实现和解析。

//TODO

参数量(神经元数量)的概念:参与计算的参数个数,占用内存空间。
计算量,运算量(连接数):包括乘法和加法计算。

3.6 1x1卷积

一般来说,1x1的卷积对神经网络特征的学习作用不大,通常用来做shape的调整,即升维和降维。

3.7 1x1特征图

当输入特征图的widthheigth为1时,此时输出将由卷积核大小唯一决定,即卷积核若为nxn,则输出特征图大小也为nxn,后续计算可在此基础上继续套用卷积计算公式。

4. 池化层

4.1 引言

一个96x96的图像,如果用一个8x8大小的卷积核,每个特征的维度为(96-8+1)x(96-8+1)(假设padding使用VALID,步长strides为1)。定义400个特征(通道),最后的维度即为7921x400=3168400 大小的向量。最后再使用全连接进行分类的话,最后是三百万的卷积特征输入,由于维度太高十分容易出现过拟合。这时就需要用到池化。

4.2 池化层作用

池化又称作下采样,池化层通常在卷积层和激活层之后。池化层没有相应的参数,它往往存在于连续的卷积层之间。通过卷积和池化分别进行特征提取以及降维的目的。池化在图像识别中应用较多,但在一些网络模型的应用比如图像重建等并没有采用池化。

池化层是对不同位置的特征进行聚合统计。例如可以计算一个区域上某个特定特征的平均值(average_pooling),或者最大值(max_pooling)。最大值池化是最经常使用的池化方式,选取区域的最大值能够很好地保持原图的特征。在这一步操作过后不仅能够得到低得多的维度,还会增强泛化性能。

池化层是对卷积层提取到的特征再一次压缩。一方面,卷积输出中包含的大部分信息是冗余的,通过池化操作获得更主要的特征,防止出现过拟合现象;另一方面,通过池化操作减小输入的大小,减少输出中相似值的数量,从而减少参数的数量来简化网络计算的复杂性,提高网络模型的鲁棒性、容错性和运行效率。

4.3 池化层分类

  1. 最大池化(Max Pooling)。选择图像某一区域像素的最大值作为该区域池化操作后的数值。

  2. 平均池化(Average Pooling)。选择图像某一区域像素的平均值作为该区域池化操作后的数值。

4.4 池化计算公式

池化的计算与卷积计算类似,只是将stride步长设置为2,使得输出大小减半。
o = ⌊ i + 2 p − k 2 ⌋ + 1 i = size of input o = size of output p = p a d d i n g k = size of kernel s = s t r i d e s ( 2 ) o=\left\lfloor\frac{i+2p-k}{2}\right\rfloor+1 \quad \begin{array}{l} \\i=\textit{size of input}\\o=\textit{size of output}\\p=padding\\k=\textit{size of kernel}\\s=strides\end{array}\quad (2) o=2i+2pk+1i=size of inputo=size of outputp=paddingk=size of kernels=strides(2)

其中, ⌊ ⋅ ⌋ \left\lfloor\cdot\right\rfloor 表示向下取整符号。

5. 全连接层

全连接层常常出现在整个卷积神经网络的末尾处,将所有的局部特征连接起来。如果说卷积层是用来提取局部特征,那么全连接层就是把所有的局部特征通过权值矩阵进行整合,并进行归一化操作,最后对各种分类情况都输出一个概率值。全连接层的输出是一个一维向量,一方面可以起到维度变换的作用,特别是可以将高维度转变为低维度,同时把有用的信息保留下来;另一方面可以起到“分类器”的作用,根据全连接得到的概率完成对特征的分类。

6. 常用CNN网络架构

常见的CNN网络架构可以被切成三个部分:

Stem: 将输入图像用少量的 convolution 扫过,并调整分辨率度。

Body: 网络的主要部分,又可分为多个stage,通常每个stage执行一次下采样(降低分辨率)的操作,其内部则为一个或多个building block (如residual bottleneck)的重复组合。

Head: 使用stem与body提取的feature,执行目标任务的预测。
在这里插入图片描述

除此之外,Building block也是一个很常被使用的术语,指的是那些被不断重复使用的小网络组合,比如说ResNet中的 residual blockresidual bottleneck block,又或是MobileNet中的depthwise convolution blockreverted bottleneck block

7. 关于CNN网络的深度/宽度/分辨率

在不大幅改动主架构的情况下,一般调整的参数有以下三种:

7.1 深度D(depth)

深度是指从输入到输出,堆叠的 building blockconvolution layer 的数量。在深度方面,越深的网络可以捕捉越复杂的特征,并且带来更好的泛化 (generalization) 能力。然而,过深的网络即使使用 skip connectionbatch normalization,仍然容易因梯度消失 (gradient vanishing) 导致不易训练。

7.2 宽度W (width)

宽度是指 building blockconvolution layer 输出 feature map的宽度 (channels或filters数)。在宽度方面,一般来说越宽的网络可以捕捉到更细节 (fine-grained) 的信息,并且容易训练。然而,宽而浅的网络却是难以捕捉复杂的特征。

7.3 分辨率R(resolution)

分辨率是指 building blockconvolution layer输出 feature map 张量的长与宽。在分辨率方面,高分辨率无庸置疑的可以得到更多细节信息,在大多的论文中基本上都是提升performance的好法宝。显而易见的缺点就是运算量,然后在localization问题需要调整、匹配的receptive field

7.4 总结

以下是EfficentNet论文提供单独增加深度、宽度与分辨率上的实验。从实验上可以看出,单独增强其中一项对效能的提升都是有效的,但是很快这个效果就会饱和
在这里插入图片描述

基于单一强化的实验,EfficientNet的作者认为应该要一起考虑强化深度、宽度与分辨率三项。然而,在一定的运算量设定下,如何决定调整这三项之间的调整比例则是一个开放的问题。

同时提高深度、宽度与分辨率,其运算量翻倍增加 (例如,增加两倍深度,会增加两倍运算量;增加宽度或分辨率度两倍,则会增加运算量四倍)。

这篇关于关于CNN卷积神经网络与Conv2D标准卷积的重要概念的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/579462

相关文章

Linux Mint Xia 22.1重磅发布: 重要更新一览

《LinuxMintXia22.1重磅发布:重要更新一览》Beta版LinuxMint“Xia”22.1发布,新版本基于Ubuntu24.04,内核版本为Linux6.8,这... linux Mint 22.1「Xia」正式发布啦!这次更新带来了诸多优化和改进,进一步巩固了 Mint 在 Linux 桌面

Python 标准库time时间的访问和转换问题小结

《Python标准库time时间的访问和转换问题小结》time模块为Python提供了处理时间和日期的多种功能,适用于多种与时间相关的场景,包括获取当前时间、格式化时间、暂停程序执行、计算程序运行时... 目录模块介绍使用场景主要类主要函数 - time()- sleep()- localtime()- g

如何评价Ubuntu 24.04 LTS? Ubuntu 24.04 LTS新功能亮点和重要变化

《如何评价Ubuntu24.04LTS?Ubuntu24.04LTS新功能亮点和重要变化》Ubuntu24.04LTS即将发布,带来一系列提升用户体验的显著功能,本文深入探讨了该版本的亮... Ubuntu 24.04 LTS,代号 Noble NumBAT,正式发布下载!如果你在使用 Ubuntu 23.

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

【VUE】跨域问题的概念,以及解决方法。

目录 1.跨域概念 2.解决方法 2.1 配置网络请求代理 2.2 使用@CrossOrigin 注解 2.3 通过配置文件实现跨域 2.4 添加 CorsWebFilter 来解决跨域问题 1.跨域概念 跨域问题是由于浏览器实施了同源策略,该策略要求请求的域名、协议和端口必须与提供资源的服务相同。如果不相同,则需要服务器显式地允许这种跨域请求。一般在springbo

数据治理框架-ISO数据治理标准

引言 "数据治理"并不是一个新的概念,国内外有很多组织专注于数据治理理论和实践的研究。目前国际上,主要的数据治理框架有ISO数据治理标准、GDI数据治理框架、DAMA数据治理管理框架等。 ISO数据治理标准 改标准阐述了数据治理的标准、基本原则和数据治理模型,是一套完整的数据治理方法论。 ISO/IEC 38505标准的数据治理方法论的核心内容如下: 数据治理的目标:促进组织高效、合理地

C 标准库 - `<float.h>`

C 标准库 - <float.h> 概述 <float.h> 是 C 标准库中的一个头文件,它定义了与浮点数类型相关的宏。这些宏提供了关于浮点数的属性信息,如精度、最小和最大值、以及舍入误差等。这个头文件对于需要精确控制浮点数行为的程序非常有用,尤其是在数值计算和科学计算领域。 主要宏 <float.h> 中定义了许多宏,下面列举了一些主要的宏: FLT_RADIX:定义了浮点数的基数。

【MRI基础】TR 和 TE 时间概念

重复时间 (TR) 磁共振成像 (MRI) 中的 TR(重复时间,repetition time)是施加于同一切片的连续脉冲序列之间的时间间隔。具体而言,TR 是施加一个 RF(射频)脉冲与施加下一个 RF 脉冲之间的持续时间。TR 以毫秒 (ms) 为单位,主要控制后续脉冲之前的纵向弛豫程度(T1 弛豫),使其成为显著影响 MRI 中的图像对比度和信号特性的重要参数。 回声时间 (TE)

计算机网络基础概念 交换机、路由器、网关、TBOX

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、VLAN是什么?二 、交换机三、路由器四、网关五、TBOXTelematics BOX,简称车载T-BOX,车联网系统包含四部分,主机、车载T-BOX、手机APP及后台系统。主机主要用于车内的影音娱乐,以及车辆信息显示;车载T-BOX主要用于和后台系统/手机APP通信,实现手机APP的车辆信息显示与控

01 Docker概念和部署

目录 1.1 Docker 概述 1.1.1 Docker 的优势 1.1.2 镜像 1.1.3 容器 1.1.4 仓库 1.2 安装 Docker 1.2.1 配置和安装依赖环境 1.3镜像操作 1.3.1 搜索镜像 1.3.2 获取镜像 1.3.3 查看镜像 1.3.4 给镜像重命名 1.3.5 存储,载入镜像和删除镜像 1.4 Doecker容器操作 1.4