本文主要是介绍算法日志的存在核心在于搭建自检系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
"相信每一个人执行与日志有关的任务都会遇到这样难题吧?长达几万行的日志,如果我们单纯用肉眼去一个个排查,那么恐怕所耗费的时间是以天为计量单位了。当然这是一种比较夸张的情况,根据我的项目经验,正常情况是十几个站点的人可能每天需要花费3-4个小时去排查日志或者与日志有关却能被日志替代的内容。如果我们能搭建一个智能化的系统,使得这个系统可以智能的读取日志中我们关键的信息,那么会发生什么呢?"
有些人问,我就想用肉眼看,不行嘛?其实,"不是肉眼看不起,而是智能化日志更有性价比!"没错,如果我们搭建这样一个智能化日志自检系统,N个站n*m个团体每天都能节省n*m*k个工时去干别的事情。
现场人员自检失败表计点位教程
NOTE: 如果没有“meterPoint_Self-Checking_sys.py“脚本的请联系我们进行提供!
👇
运行该脚本,参考运行命令如下(请确保此时您的工作目录处于meter/log)
#这是一条参考运行命令,请您根据您实际的情况修改-p和-t参数的具体内容
python3 meterPoint_Self-Checking_sys.py -p meterlog -t 30M00000036658634_task1703485183168_20231225141946
# @pararm:-p 是存放日志的路径,该日志包含您刚跑完测试的日志内容。
# @pararm:-t 是您任务的序号,【如下图】,Ftp图片路径下包含”task“的字符串,也就是灰色框框住的那一串正式您此次任务的序号,输入30M00000036658634_task1703485183168_20231225141946
👇
自动生成自检报表meterlog_checking.txt
里面部分关键内容如下:
👇
接下来大家请对照这张表,找到【需要现场人员自检】的【错误】进行搜索排查,有多个,可以从上往下慢慢来。
👇
以【通用类】<序号7>"该点位没有录入"作为例子,打开自检文本meterlog_checking.txt
👇
👇
如果出现无需现场人员自检的错误,需要截图一下日志中有关内容,可能后续还需提供图片我们这边进行优化。
一些使用样例图:
# -*- coding: utf-8 -*-
'''
参考diamagnetic:
# 兰江
python3 meterPoint_Self-Checking_sys.py -p meterlog -t 30M00000036658634_task1703485183168_20231225141946
# 金鼎
python3 meterPoint_Self-Checking_sys.py -p meterlog -t 30M00000036658634_task1703485183168_20231225141947
'''
import re
import json
import argparse# 创建命令行参数解析器
parser = argparse.ArgumentParser()
parser.add_argument('-p', '--log_file', help='log文件路径')
parser.add_argument('-t', '--task_id', help='任务ID')
args = parser.parse_args()def extract_debug_segments(log_file):debug_segments = []with open(log_file, 'r') as file:lines = file.readlines()start_line = Noneend_line = Nonesegment = []for i, line in enumerate(lines):if 'Debug' in line or '收到请求' in line or '数据库信息' in line:if start_line is None:start_line = isegment.append(line.strip()) elif '结果放入队列待发送' in line:if start_line is not None:end_line = isegment.append(line)debug_segments.append([segment, start_line, end_line])segment = []start_line = Noneend_line = Nonereturn debug_segments
def process_request(request_str):target_index = request_str.index("{")# 按照":"分割字符串split_str = request_str[target_index:]# 获取分割后数组中最后一个索引所保存的信息json_str = split_str.strip().replace("—", "-").replace("'", "\"")objectList_request_str = json.loads(json_str)['objectList'][0]# for k in objectList_request_str:# print(k)return objectList_request_strdef get_pointList_length(json_str):pattern = r"'Position': '(\[.*?\])'"matches = re.search(pattern, json_str)if matches is None:return 0position_list = json.loads(matches.group(1))# print("position_list:", position_list)return len(position_list)def process_sql(json_str):json_str = json_str[json_str.index("MinValue"):]json_str = "{'" + json_strjson_str = json_str.replace("'", "\"")sql_dict = json.loads(json_str)return sql_dictdef process_result(json_str):json_str = json_str[json_str.index("code"):-5]json_str = "{'" + json_str# print(json_str)json_str = json_str.replace("'", "\"")json_str = json_str.replace("None", "null")sql_dict = json.loads(json_str)return sql_dictdef contains_digit(string):pattern = r'\d' # 正则表达式模式,匹配任意数字if re.search(pattern, string):return Trueelse:return Falseif __name__ == "__main__":# 摄像机偏移严重+模糊Error_withoutDetctor = []# 未识别出指针Error_withoutPointer = []# 读取ftp图失败Error_loadftp = []# minIO无图Error_withoutMinioImage = []# minIO错图Error_minioErrorImage = []# 点位未录入Error_withoutId = []# 表计类型录入错误Error_clsType = []# 最大最小值设置错误Error_minMaxSet = []# 最大最小值未设置Error_withoutMinMax = []# 未打刻度点位Error_withoutPointList = []# 刻度打点错误Error_PointList = []# 未识别到任何油面表!Error_ymb = []# OCR没有检测出数字Error_ocrRec = []# OCR没有检测出表盘Error_ocrDet = []# ===========================核# 获取命令行参数log_file = args.log_filework_id = args.task_iddebug_segments = extract_debug_segments(log_file)error_num = 0# not_reading_num = 0# type_num = 0ymb_num, sxb_num, bj_num = 0, 0, 0ymb_errorNum, sxb_errorNum, bj_errorNum = 0, 0, 0for segment in debug_segments:error_flag = False# print('Start Line:', segment[1])# print('End Line:', segment[2])for line in segment[0]:# print(line)if "收到请求" in line:# print('【请求信息】: ',end='')objectList_request_str = process_request(line)extract_objectId = objectList_request_str['objectId']# print(objectList_request_str['imageUrlList'][0], work_id)if not work_id in objectList_request_str['imageUrlList'][0]:breakelif '数据库信息' in line:if line.split("【数据库信息】")[-1] == '{}':# 数据库信息为空# print('*pointList_length:0')# print('{}')Error_withoutId.append(extract_objectId)error_flag = Truebreakelse:# 数据库有信息pointList_length = get_pointList_length(line)sql_schem = process_sql(line)MinValue = sql_schem['MinValue']MaxValue = sql_schem['MaxValue']meter_type = sql_schem['AlgorithmType']ImagePath = sql_schem['ImagePath']if meter_type == 'meter_v5':bj_num += 1if meter_type == 'meter_ywj':ymb_num += 1if meter_type == 'paddleocr':sxb_num += 1if meter_type == 'meter_v5':if len(MinValue)== 0 or len(MaxValue) == 0:Error_withoutMinMax.append(extract_objectId)MinValue = float(0)MaxValue = float(100)error_flag = Trueelse:MinValue = float(MinValue)MaxValue = float(MaxValue)# 表计类型录入错误(如果打点了,但表计类型不是meter_v5)if meter_type == 'meter_v5' and pointList_length == 0:Error_clsType.append(extract_objectId)error_flag = True# 未打刻度点位if meter_type == 'meter_v5' and pointList_length == 0:Error_withoutPointList.append(extract_objectId)error_flag = True# print(sql_schem, end=',')# print("*pointList_length:", pointList_length)elif '结果放入队列待发送' in line:result_schem = process_result(line)# print('【结果队列信息】:',end='')# print(result_schem)if result_schem['code'] == '2001':Error_loadftp.append(extract_objectId)error_flag = Trueif result_schem['desc'] == '未识别到任何油面表!':error_flag = TrueError_ymb.append(extract_objectId)else:splitContent = line.split("【Debug】")[-1]if "成功检测到表盘!表盘信息是" in splitContent:det_clsType = splitContent.split(":")[-1].strip().strip("").strip("[]").strip()if splitContent.split(":")[-1].strip().strip("") == "[]":Error_withoutDetctor.append(extract_objectId)error_flag = Trueif not 'sxb' in det_clsType and meter_type == 'paddleocr':Error_ocrDet.append(extract_objectId) error_flag = Trueif 'ywb' in det_clsType:ywb_minMax = [[-20, 140],[0, 160]]iter_minMax = [MinValue, MaxValue]if not iter_minMax in ywb_minMax:Error_minMaxSet.append(extract_objectId)error_flag = Trueelif 'xldlb' in det_clsType:xldlb_minMax = [[0, 3.0],[0, 10],[0, 9],[0, 1]]iter_minMax = [MinValue, MaxValue]if not iter_minMax in xldlb_minMax:Error_minMaxSet.append(extract_objectId)error_flag = True# if '动作次数' in splitContent:# print(splitContent)# if '泄漏电流值' in splitContent:# print(splitContent)if 'OCR没有检测出数字' in splitContent:Error_ocrRec.append(extract_objectId)error_flag = Trueif "没识别出指针" in splitContent:Error_withoutPointer.append(extract_objectId)error_flag = Trueif len(ImagePath) == 0 or "MinIo中缺失该点位基准图" in splitContent:Error_withoutMinioImage.append(extract_objectId)error_flag = True# 用于验证if '读数结果' in splitContent and not contains_digit(splitContent):# not_reading_num +=1# 验证后 无读数个数和错误个数基本一致->代表验证成功# print(not_reading_num)continueif error_flag:if meter_type == 'meter_v5':bj_errorNum += 1if meter_type == 'meter_ywj':ymb_errorNum += 1if meter_type == 'paddleocr':sxb_errorNum += 1error_num += 1print("错误总数比:【{}/{}】".format(error_num,len(debug_segments)))# ===========================核# 写入with open('meterlog_checking.txt', 'w') as output_file:output_file.write('您这次序号为[{}]的任务:\n---------------------------------\n一共测试表计数量:[{}]个, 错误点位为:[{}]个, 未打点个数为:[{}]。\n<在此之中>\n,指针类表计成功占[{}/{}]个\n,油面表成功占[{}/{}]个\n,数显表成功占[{}/{}]个。'.format(work_id,len(debug_segments),error_num,len(Error_withoutId),bj_num - bj_errorNum, bj_num,ymb_num - ymb_errorNum, ymb_num, sxb_num - sxb_errorNum, sxb_num))output_file.write('\n')output_file.write('---------------------------------\n')output_file.write('NOTE:接下来,请您根据所需要查询的错误名称,使用<ctrl+F>的方式进行查询。\n')output_file.write('---------------------------------\n')output_file.write("【错误】可能存在摄像机偏移严重/模糊<数量:{}>:".format(str(len(Error_withoutDetctor))) + "\n")output_file.write("\n".join(Error_withoutDetctor))output_file.write('\n')output_file.write("【错误】未识别出指针<数量:{}>:".format(str(len(Error_withoutPointer))) + "\n") output_file.write("\n".join(Error_withoutPointer))output_file.write('\n')output_file.write("【错误】读取ftp图失败<数量:{}>:".format(str(len(Error_loadftp))) + "\n")output_file.write("\n".join(Error_loadftp))output_file.write('\n')output_file.write("【错误】minIO无图<数量:{}>:".format(str(len(Error_withoutMinioImage))) + "\n")output_file.write("\n".join(Error_withoutMinioImage))output_file.write('\n')output_file.write("【错误】该点位没有录入<数量:{}>:".format(str(len(Error_withoutId))) + "\n")output_file.write("\n".join(Error_withoutId))output_file.write('\n')output_file.write("【错误】表计类型录入错误<数量:{}>:".format(str(len(Error_clsType))) + "\n")output_file.write("\n".join(set(Error_clsType)))output_file.write('\n')output_file.write("【错误】最大最小值未设置<数量:{}>:".format(str(len(Error_withoutMinMax))) + "\n")output_file.write("\n".join(Error_withoutMinMax))output_file.write('\n')output_file.write("【错误】未打刻度点位<数量:{}>:".format(str(len(Error_withoutPointList))) + "\n")output_file.write("\n".join(Error_withoutPointList))output_file.write('\n')output_file.write("【错误】最大最小值设置错误<数量:{}>:".format(str(len(Error_minMaxSet))) + "\n")output_file.write("\n".join(Error_minMaxSet))output_file.write('\n')output_file.write("【错误】存在刻度打点错误(暂未启用)<数量:{}>:".format(str(len(Error_PointList))) + "\n")output_file.write("\n".join(Error_PointList))output_file.write('\n')output_file.write("【错误】未识别到任何油面表<数量:{}>:".format(str(len(Error_ymb))) + "\n")output_file.write("\n".join(Error_ymb))output_file.write('\n')output_file.write("【错误】OCR没有检测出数字<数量:{}>:".format(str(len(Error_ocrRec))) + "\n")output_file.write("\n".join(Error_ocrRec))output_file.write('\n')output_file.write("【错误】OCR没有检测出表盘<数量:{}>:".format(str(len(Error_ocrDet))) + "\n")output_file.write("\n".join(Error_ocrDet))output_file.write('\n')
这篇关于算法日志的存在核心在于搭建自检系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!