J2 - ResNet-50v2实战

2024-01-06 16:44
文章标签 实战 resnet j2 50v2

本文主要是介绍J2 - ResNet-50v2实战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊 | 接辅导、项目定制

目录

  • 环境
  • 步骤
    • 环境设置
    • 数据准备
      • 图像信息查看
    • 模型设计
      • ResidualBlock块
      • stack堆叠
      • resnet50v2模型
    • 模型训练
    • 模型效果展示
  • 总结与心得体会


环境

  • 系统: Linux
  • 语言: Python3.8.10
  • 深度学习框架: Pytorch2.0.0+cu118

步骤

环境设置

包引用

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, random_split
from torchvision import datasets, transformsimport copy, random, pathlib
import matplotlib.pyplot as plt
from PIL import Image
from torchinfo import summary
import numpy as np

设置一个全局的设备,使后面的模型和数据放置在统一的设备中

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

数据准备

从K同学提供的网盘中下载鸟类数据集,解压到data目录下,数据集的结构如下:
目录结构
其中bird_photos下不同的文件夹中保存了不同类型的鸟类图像,这个目录结构可以使用torchvision.datasets.ImageFolder直接加载

图像信息查看

  1. 获取到所有的图像
root_dir = 'data/bird_photos'
root_directory = pathlib.Path(root_dir)
image_list = root_directory.glob("*/*")
  1. 随机打印5个图像的尺寸
for _ in range(5):print(np.array(Image.open(str(random.choice(image_list)))).shape)

图像尺寸
发现都是224*224大小的三通道图像,所以我们可以在数据集处理时省略Resize这一步,或者加上224的Resize排除异常情况
3. 随机打印20个图像

plt.figure(figsize=(20, 4))
for i in range(20):plt.subplot(2, 10, i+1)plt.axis('off')image = random.choice(image_list)class_name = image.parts[-2]plt.title(class_name)plt.imshow(Image.open(str(image)))

图像展示
4. 创建数据集
首先定义一个图像的预处理

transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225],),
])

然后通过datasets.ImageFolder加载文件夹

dataset = datasets.ImageFolder(root_dir, transform=transform)

从数据中提取图像不同的分类名称

class_names = [x for x in dataset.class_to_idx]

划分训练集和验证集

train_size = int(len(dataset) * 0.8)
test_size = len(dataset) - train_sizetrain_dataset, test_dataset = random_split(dataset, [train_size, test_size])

最后,将数据集划分批次

batch_size = 8
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_loader = DataLoader(test_dataset, batch_size=batch_size)

模型设计

基于上次的ResNet-50,v2主要改进了BatchNormalization和激活函数的顺序。

ResidualBlock块

class ResidualBlock(nn.Module):def __init__(self, input_size, filters, kernel_size=3, stride=1, conv_shortcut=False):super().__init__()self.preact = nn.Sequential(nn.BatchNorm2d(input_size), nn.ReLU())self.conv_shortcut = conv_shortcutif conv_shortcut:self.shortcut = nn.Conv2d(input_size, 4*filters, 1, stride=stride, bias=False)elif stride > 1:self.shortcut = nn.MaxPool2d(1, stride=stride)else:self.shortcut = nn.Identity()self.conv1 = nn.Sequential(nn.Conv2d(input_size, filters, 1, stride=1, bias=False),nn.BatchNorm2d(filters),nn.ReLU())self.conv2 = nn.Sequential(nn.Conv2d(filters, filters, kernel_size, padding=1, stride=stride, bias=False),nn.BatchNorm2d(filters),nn.ReLU())self.conv3 = nn.Conv2d(filters, 4*filters, 1, bias=False)def forward(self, x):pre = self.preact(x)if self.conv_shortcut:shortcut = self.shortcut(pre)else:shortcut = self.shortcut(x)x = self.conv1(pre)x = self.conv2(x)x = self.conv3(x)x = x + shortcutreturn x

stack堆叠

class ResidualStack(nn.Module):def __init__(self, input_size, filters, blocks, stride=2):super().__init__()self.first = ResidualBlock(input_size, filters, conv_shortcut=True)self.module_list = nn.ModuleList([])for i in range(2, blocks):self.module_list.append(ResidualBlock(filters*4, filters))self.last = ResidualBlock(filters*4, filters, stride=stride)def forward(self, x):x = self.first(x)for layer in self.module_list:x = layer(x)x = self.last(x)return x

resnet50v2模型

class ResNet50v2(nn.Module):def __init__(self, include_top=True, preact=True, use_bias=True, input_size=None, pooling=None, classes=1000, classifier_activation = 'softmax'):super().__init__()self.input_conv = nn.Conv2d(3, 64, 7, padding=3, stride=2, bias=use_bias)if not preact:self.pre = nn.Sequential(nn.BatchNorm2d(64), nn.ReLU())else:self.pre = nn.Identity()self.pool = nn.MaxPool2d(3, padding=1, stride=2)self.stack1 = ResidualStack(64, 64, 3)self.stack2 = ResidualStack(256, 128, 4)self.stack3 = ResidualStack(512, 256, 6)self.stack4 = ResidualStack(1024, 512, 3, stride=1)if preact:self.post = nn.Sequential(nn.BatchNorm2d(2048), nn.ReLU())else:self.post = nn.Identity()if include_top:self.final = nn.Sequential(nn.AdaptiveAvgPool2d(1), nn.Flatten(), nn.Linear(2048, classes), nn.Softmax() if 'softmax' == classifier_activation else nn.Identity())elif 'avg' == pooling:self.final = nn.AdaptiveAvgPool2d(1)elif 'max' == pooling:self.final = nn.AdaptiveMaxPool2d(1)def forward(self, x):x = self.input_conv(x)x = self.pre(x)x = self.pool(x)x = self.stack1(x)x = self.stack2(x)x = self.stack3(x)x = self.stack4(x)x = self.post(x)x = self.final(x)return x

创建模型并打印

model = ResNet50v2(classes=len(class_names)).to(device)
summary(model, input_size=(8, 3, 224, 224))
===============================================================================================
Layer (type:depth-idx)                        Output Shape              Param #
===============================================================================================
ResNet50v2                                    [8, 4]                    --
├─Conv2d: 1-1                                 [8, 64, 112, 112]         9,472
├─Identity: 1-2                               [8, 64, 112, 112]         --
├─MaxPool2d: 1-3                              [8, 64, 56, 56]           --
├─ResidualStack: 1-4                          [8, 256, 28, 28]          --
│    └─ResidualBlock: 2-1                     [8, 256, 56, 56]          --
│    │    └─Sequential: 3-1                   [8, 64, 56, 56]           128
│    │    └─Conv2d: 3-2                       [8, 256, 56, 56]          16,384
│    │    └─Sequential: 3-3                   [8, 64, 56, 56]           4,224
│    │    └─Sequential: 3-4                   [8, 64, 56, 56]           36,992
│    │    └─Conv2d: 3-5                       [8, 256, 56, 56]          16,384
│    └─ModuleList: 2-2                        --                        --
│    │    └─ResidualBlock: 3-6                [8, 256, 56, 56]          70,400
│    └─ResidualBlock: 2-3                     [8, 256, 28, 28]          --
│    │    └─Sequential: 3-7                   [8, 256, 56, 56]          512
│    │    └─MaxPool2d: 3-8                    [8, 256, 28, 28]          --
│    │    └─Sequential: 3-9                   [8, 64, 56, 56]           16,512
│    │    └─Sequential: 3-10                  [8, 64, 28, 28]           36,992
│    │    └─Conv2d: 3-11                      [8, 256, 28, 28]          16,384
├─ResidualStack: 1-5                          [8, 512, 14, 14]          --
│    └─ResidualBlock: 2-4                     [8, 512, 28, 28]          --
│    │    └─Sequential: 3-12                  [8, 256, 28, 28]          512
│    │    └─Conv2d: 3-13                      [8, 512, 28, 28]          131,072
│    │    └─Sequential: 3-14                  [8, 128, 28, 28]          33,024
│    │    └─Sequential: 3-15                  [8, 128, 28, 28]          147,712
│    │    └─Conv2d: 3-16                      [8, 512, 28, 28]          65,536
│    └─ModuleList: 2-5                        --                        --
│    │    └─ResidualBlock: 3-17               [8, 512, 28, 28]          280,064
│    │    └─ResidualBlock: 3-18               [8, 512, 28, 28]          280,064
│    └─ResidualBlock: 2-6                     [8, 512, 14, 14]          --
│    │    └─Sequential: 3-19                  [8, 512, 28, 28]          1,024
│    │    └─MaxPool2d: 3-20                   [8, 512, 14, 14]          --
│    │    └─Sequential: 3-21                  [8, 128, 28, 28]          65,792
│    │    └─Sequential: 3-22                  [8, 128, 14, 14]          147,712
│    │    └─Conv2d: 3-23                      [8, 512, 14, 14]          65,536
├─ResidualStack: 1-6                          [8, 1024, 7, 7]           --
│    └─ResidualBlock: 2-7                     [8, 1024, 14, 14]         --
│    │    └─Sequential: 3-24                  [8, 512, 14, 14]          1,024
│    │    └─Conv2d: 3-25                      [8, 1024, 14, 14]         524,288
│    │    └─Sequential: 3-26                  [8, 256, 14, 14]          131,584
│    │    └─Sequential: 3-27                  [8, 256, 14, 14]          590,336
│    │    └─Conv2d: 3-28                      [8, 1024, 14, 14]         262,144
│    └─ModuleList: 2-8                        --                        --
│    │    └─ResidualBlock: 3-29               [8, 1024, 14, 14]         1,117,184
│    │    └─ResidualBlock: 3-30               [8, 1024, 14, 14]         1,117,184
│    │    └─ResidualBlock: 3-31               [8, 1024, 14, 14]         1,117,184
│    │    └─ResidualBlock: 3-32               [8, 1024, 14, 14]         1,117,184
│    └─ResidualBlock: 2-9                     [8, 1024, 7, 7]           --
│    │    └─Sequential: 3-33                  [8, 1024, 14, 14]         2,048
│    │    └─MaxPool2d: 3-34                   [8, 1024, 7, 7]           --
│    │    └─Sequential: 3-35                  [8, 256, 14, 14]          262,656
│    │    └─Sequential: 3-36                  [8, 256, 7, 7]            590,336
│    │    └─Conv2d: 3-37                      [8, 1024, 7, 7]           262,144
├─ResidualStack: 1-7                          [8, 2048, 7, 7]           --
│    └─ResidualBlock: 2-10                    [8, 2048, 7, 7]           --
│    │    └─Sequential: 3-38                  [8, 1024, 7, 7]           2,048
│    │    └─Conv2d: 3-39                      [8, 2048, 7, 7]           2,097,152
│    │    └─Sequential: 3-40                  [8, 512, 7, 7]            525,312
│    │    └─Sequential: 3-41                  [8, 512, 7, 7]            2,360,320
│    │    └─Conv2d: 3-42                      [8, 2048, 7, 7]           1,048,576
│    └─ModuleList: 2-11                       --                        --
│    │    └─ResidualBlock: 3-43               [8, 2048, 7, 7]           4,462,592
│    └─ResidualBlock: 2-12                    [8, 2048, 7, 7]           --
│    │    └─Sequential: 3-44                  [8, 2048, 7, 7]           4,096
│    │    └─Identity: 3-45                    [8, 2048, 7, 7]           --
│    │    └─Sequential: 3-46                  [8, 512, 7, 7]            1,049,600
│    │    └─Sequential: 3-47                  [8, 512, 7, 7]            2,360,320
│    │    └─Conv2d: 3-48                      [8, 2048, 7, 7]           1,048,576
├─Sequential: 1-8                             [8, 2048, 7, 7]           --
│    └─BatchNorm2d: 2-13                      [8, 2048, 7, 7]           4,096
│    └─ReLU: 2-14                             [8, 2048, 7, 7]           --
├─Sequential: 1-9                             [8, 4]                    --
│    └─AdaptiveAvgPool2d: 2-15                [8, 2048, 1, 1]           --
│    └─Flatten: 2-16                          [8, 2048]                 --
│    └─Linear: 2-17                           [8, 4]                    8,196
│    └─Softmax: 2-18                          [8, 4]                    --
===============================================================================================
Total params: 23,508,612
Trainable params: 23,508,612
Non-trainable params: 0
Total mult-adds (G): 27.85
===============================================================================================
Input size (MB): 4.82
Forward/backward pass size (MB): 1051.69
Params size (MB): 94.03
Estimated Total Size (MB): 1150.54
===============================================================================================

模型训练

训练代码和上一节完全一样,就不再写了, 训练结果如下:

Epoch: 1, Lr:1e-05, TrainAcc: 34.1, TrainLoss: 1.368, TestAcc: 49.6, TestLoss: 1.338
Epoch: 2, Lr:1e-05, TrainAcc: 52.4, TrainLoss: 1.297, TestAcc: 63.7, TestLoss: 1.192
Epoch: 3, Lr:1e-05, TrainAcc: 59.3, TrainLoss: 1.190, TestAcc: 68.1, TestLoss: 1.090
Epoch: 4, Lr:1e-05, TrainAcc: 61.1, TrainLoss: 1.150, TestAcc: 74.3, TestLoss: 1.049
Epoch: 5, Lr:9.5e-06, TrainAcc: 69.0, TrainLoss: 1.078, TestAcc: 74.3, TestLoss: 1.019
Epoch: 6, Lr:9.5e-06, TrainAcc: 75.7, TrainLoss: 1.029, TestAcc: 77.0, TestLoss: 0.984
Epoch: 7, Lr:9.5e-06, TrainAcc: 75.9, TrainLoss: 1.011, TestAcc: 78.8, TestLoss: 0.972
Epoch: 8, Lr:9.5e-06, TrainAcc: 78.5, TrainLoss: 0.986, TestAcc: 76.1, TestLoss: 0.974
Epoch: 9, Lr:9.5e-06, TrainAcc: 79.6, TrainLoss: 0.973, TestAcc: 82.3, TestLoss: 0.934
Epoch: 10, Lr:9.025e-06, TrainAcc: 83.6, TrainLoss: 0.938, TestAcc: 80.5, TestLoss: 0.931
Epoch: 11, Lr:9.025e-06, TrainAcc: 86.3, TrainLoss: 0.914, TestAcc: 80.5, TestLoss: 0.940
Epoch: 12, Lr:9.025e-06, TrainAcc: 86.1, TrainLoss: 0.914, TestAcc: 79.6, TestLoss: 0.934
Epoch: 13, Lr:9.025e-06, TrainAcc: 87.2, TrainLoss: 0.893, TestAcc: 84.1, TestLoss: 0.918
Epoch: 14, Lr:9.025e-06, TrainAcc: 89.6, TrainLoss: 0.879, TestAcc: 84.1, TestLoss: 0.917
Epoch: 15, Lr:8.573749999999999e-06, TrainAcc: 91.6, TrainLoss: 0.853, TestAcc: 80.5, TestLoss: 0.944
Epoch: 16, Lr:8.573749999999999e-06, TrainAcc: 90.3, TrainLoss: 0.863, TestAcc: 83.2, TestLoss: 0.919
Epoch: 17, Lr:8.573749999999999e-06, TrainAcc: 93.6, TrainLoss: 0.837, TestAcc: 77.0, TestLoss: 0.979
Epoch: 18, Lr:8.573749999999999e-06, TrainAcc: 93.1, TrainLoss: 0.838, TestAcc: 81.4, TestLoss: 0.934
Epoch: 19, Lr:8.573749999999999e-06, TrainAcc: 94.9, TrainLoss: 0.819, TestAcc: 81.4, TestLoss: 0.932
Epoch: 20, Lr:8.1450625e-06, TrainAcc: 94.7, TrainLoss: 0.825, TestAcc: 85.8, TestLoss: 0.918
Epoch: 21, Lr:8.1450625e-06, TrainAcc: 95.8, TrainLoss: 0.810, TestAcc: 80.5, TestLoss: 0.928
Epoch: 22, Lr:8.1450625e-06, TrainAcc: 93.8, TrainLoss: 0.823, TestAcc: 84.1, TestLoss: 0.900
Epoch: 23, Lr:8.1450625e-06, TrainAcc: 94.0, TrainLoss: 0.821, TestAcc: 86.7, TestLoss: 0.891
Epoch: 24, Lr:8.1450625e-06, TrainAcc: 94.5, TrainLoss: 0.829, TestAcc: 84.1, TestLoss: 0.909
Epoch: 25, Lr:7.737809374999999e-06, TrainAcc: 92.3, TrainLoss: 0.836, TestAcc: 77.0, TestLoss: 0.938
Epoch: 26, Lr:7.737809374999999e-06, TrainAcc: 93.8, TrainLoss: 0.828, TestAcc: 85.8, TestLoss: 0.897
Epoch: 27, Lr:7.737809374999999e-06, TrainAcc: 95.1, TrainLoss: 0.806, TestAcc: 85.0, TestLoss: 0.912
Epoch: 28, Lr:7.737809374999999e-06, TrainAcc: 96.9, TrainLoss: 0.794, TestAcc: 81.4, TestLoss: 0.919
Epoch: 29, Lr:7.737809374999999e-06, TrainAcc: 96.9, TrainLoss: 0.796, TestAcc: 83.2, TestLoss: 0.901
Epoch: 30, Lr:7.350918906249998e-06, TrainAcc: 97.3, TrainLoss: 0.789, TestAcc: 85.8, TestLoss: 0.885
Epoch: 31, Lr:7.350918906249998e-06, TrainAcc: 96.2, TrainLoss: 0.805, TestAcc: 83.2, TestLoss: 0.898
Epoch: 32, Lr:7.350918906249998e-06, TrainAcc: 97.8, TrainLoss: 0.791, TestAcc: 81.4, TestLoss: 0.920
Epoch: 33, Lr:7.350918906249998e-06, TrainAcc: 95.4, TrainLoss: 0.802, TestAcc: 82.3, TestLoss: 0.910
Epoch: 34, Lr:7.350918906249998e-06, TrainAcc: 96.5, TrainLoss: 0.792, TestAcc: 87.6, TestLoss: 0.882
Epoch: 35, Lr:6.983372960937498e-06, TrainAcc: 96.2, TrainLoss: 0.793, TestAcc: 85.8, TestLoss: 0.877
Epoch: 36, Lr:6.983372960937498e-06, TrainAcc: 98.2, TrainLoss: 0.780, TestAcc: 86.7, TestLoss: 0.874
Epoch: 37, Lr:6.983372960937498e-06, TrainAcc: 97.8, TrainLoss: 0.775, TestAcc: 87.6, TestLoss: 0.875
Epoch: 38, Lr:6.983372960937498e-06, TrainAcc: 97.6, TrainLoss: 0.790, TestAcc: 87.6, TestLoss: 0.881
Epoch: 39, Lr:6.983372960937498e-06, TrainAcc: 96.9, TrainLoss: 0.787, TestAcc: 81.4, TestLoss: 0.923
Epoch: 40, Lr:6.634204312890623e-06, TrainAcc: 98.5, TrainLoss: 0.774, TestAcc: 85.0, TestLoss: 0.903
Epoch: 41, Lr:6.634204312890623e-06, TrainAcc: 97.3, TrainLoss: 0.793, TestAcc: 90.3, TestLoss: 0.866
Epoch: 42, Lr:6.634204312890623e-06, TrainAcc: 98.2, TrainLoss: 0.779, TestAcc: 87.6, TestLoss: 0.882
Epoch: 43, Lr:6.634204312890623e-06, TrainAcc: 97.6, TrainLoss: 0.784, TestAcc: 84.1, TestLoss: 0.902
Epoch: 44, Lr:6.634204312890623e-06, TrainAcc: 97.3, TrainLoss: 0.786, TestAcc: 85.8, TestLoss: 0.889
Epoch: 45, Lr:6.302494097246091e-06, TrainAcc: 99.1, TrainLoss: 0.774, TestAcc: 86.7, TestLoss: 0.883
Epoch: 46, Lr:6.302494097246091e-06, TrainAcc: 98.2, TrainLoss: 0.774, TestAcc: 83.2, TestLoss: 0.891
Epoch: 47, Lr:6.302494097246091e-06, TrainAcc: 98.9, TrainLoss: 0.770, TestAcc: 85.0, TestLoss: 0.890
Epoch: 48, Lr:6.302494097246091e-06, TrainAcc: 99.1, TrainLoss: 0.766, TestAcc: 85.0, TestLoss: 0.886
Epoch: 49, Lr:6.302494097246091e-06, TrainAcc: 98.7, TrainLoss: 0.771, TestAcc: 86.7, TestLoss: 0.884
Epoch: 50, Lr:5.987369392383788e-06, TrainAcc: 99.3, TrainLoss: 0.758, TestAcc: 87.6, TestLoss: 0.874
Epoch: 51, Lr:5.987369392383788e-06, TrainAcc: 98.5, TrainLoss: 0.772, TestAcc: 87.6, TestLoss: 0.870
Epoch: 52, Lr:5.987369392383788e-06, TrainAcc: 98.7, TrainLoss: 0.767, TestAcc: 82.3, TestLoss: 0.900
Epoch: 53, Lr:5.987369392383788e-06, TrainAcc: 100.0, TrainLoss: 0.754, TestAcc: 85.8, TestLoss: 0.882
Epoch: 54, Lr:5.987369392383788e-06, TrainAcc: 98.7, TrainLoss: 0.770, TestAcc: 85.0, TestLoss: 0.884
Epoch: 55, Lr:5.688000922764597e-06, TrainAcc: 100.0, TrainLoss: 0.756, TestAcc: 85.8, TestLoss: 0.870
Epoch: 56, Lr:5.688000922764597e-06, TrainAcc: 98.5, TrainLoss: 0.772, TestAcc: 86.7, TestLoss: 0.881
Epoch: 57, Lr:5.688000922764597e-06, TrainAcc: 98.5, TrainLoss: 0.768, TestAcc: 85.0, TestLoss: 0.884
Epoch: 58, Lr:5.688000922764597e-06, TrainAcc: 98.9, TrainLoss: 0.766, TestAcc: 85.8, TestLoss: 0.883
Epoch: 59, Lr:5.688000922764597e-06, TrainAcc: 99.6, TrainLoss: 0.765, TestAcc: 86.7, TestLoss: 0.880
Epoch: 60, Lr:5.403600876626367e-06, TrainAcc: 99.3, TrainLoss: 0.766, TestAcc: 85.8, TestLoss: 0.880
Epoch: 61, Lr:5.403600876626367e-06, TrainAcc: 99.8, TrainLoss: 0.755, TestAcc: 85.8, TestLoss: 0.876
Epoch: 62, Lr:5.403600876626367e-06, TrainAcc: 99.6, TrainLoss: 0.759, TestAcc: 85.0, TestLoss: 0.874
Epoch: 63, Lr:5.403600876626367e-06, TrainAcc: 97.6, TrainLoss: 0.772, TestAcc: 86.7, TestLoss: 0.878
Epoch: 64, Lr:5.403600876626367e-06, TrainAcc: 99.6, TrainLoss: 0.761, TestAcc: 88.5, TestLoss: 0.866
Epoch: 65, Lr:5.133420832795049e-06, TrainAcc: 98.5, TrainLoss: 0.771, TestAcc: 85.0, TestLoss: 0.890
Epoch: 66, Lr:5.133420832795049e-06, TrainAcc: 98.9, TrainLoss: 0.763, TestAcc: 85.8, TestLoss: 0.887
Epoch: 67, Lr:5.133420832795049e-06, TrainAcc: 99.1, TrainLoss: 0.766, TestAcc: 85.0, TestLoss: 0.889
Epoch: 68, Lr:5.133420832795049e-06, TrainAcc: 98.7, TrainLoss: 0.763, TestAcc: 88.5, TestLoss: 0.872
Epoch: 69, Lr:5.133420832795049e-06, TrainAcc: 99.1, TrainLoss: 0.762, TestAcc: 87.6, TestLoss: 0.872
Epoch: 70, Lr:4.876749791155296e-06, TrainAcc: 99.6, TrainLoss: 0.757, TestAcc: 85.8, TestLoss: 0.876
Epoch: 71, Lr:4.876749791155296e-06, TrainAcc: 99.3, TrainLoss: 0.762, TestAcc: 85.0, TestLoss: 0.884
Epoch: 72, Lr:4.876749791155296e-06, TrainAcc: 98.9, TrainLoss: 0.767, TestAcc: 85.0, TestLoss: 0.882
Epoch: 73, Lr:4.876749791155296e-06, TrainAcc: 99.3, TrainLoss: 0.758, TestAcc: 85.0, TestLoss: 0.892
Epoch: 74, Lr:4.876749791155296e-06, TrainAcc: 98.7, TrainLoss: 0.768, TestAcc: 84.1, TestLoss: 0.880
Epoch: 75, Lr:4.632912301597531e-06, TrainAcc: 99.1, TrainLoss: 0.763, TestAcc: 87.6, TestLoss: 0.863
Epoch: 76, Lr:4.632912301597531e-06, TrainAcc: 99.6, TrainLoss: 0.757, TestAcc: 87.6, TestLoss: 0.865
Epoch: 77, Lr:4.632912301597531e-06, TrainAcc: 99.1, TrainLoss: 0.759, TestAcc: 81.4, TestLoss: 0.913
Epoch: 78, Lr:4.632912301597531e-06, TrainAcc: 99.3, TrainLoss: 0.758, TestAcc: 86.7, TestLoss: 0.870
Epoch: 79, Lr:4.632912301597531e-06, TrainAcc: 99.3, TrainLoss: 0.760, TestAcc: 81.4, TestLoss: 0.911
Epoch: 80, Lr:4.401266686517654e-06, TrainAcc: 99.3, TrainLoss: 0.761, TestAcc: 86.7, TestLoss: 0.883
Epoch: 81, Lr:4.401266686517654e-06, TrainAcc: 99.6, TrainLoss: 0.761, TestAcc: 92.0, TestLoss: 0.844
Epoch: 82, Lr:4.401266686517654e-06, TrainAcc: 99.6, TrainLoss: 0.758, TestAcc: 86.7, TestLoss: 0.870
Epoch: 83, Lr:4.401266686517654e-06, TrainAcc: 99.8, TrainLoss: 0.757, TestAcc: 88.5, TestLoss: 0.865
Epoch: 84, Lr:4.401266686517654e-06, TrainAcc: 99.6, TrainLoss: 0.756, TestAcc: 88.5, TestLoss: 0.860
Epoch: 85, Lr:4.181203352191771e-06, TrainAcc: 98.2, TrainLoss: 0.769, TestAcc: 87.6, TestLoss: 0.884
Epoch: 86, Lr:4.181203352191771e-06, TrainAcc: 99.3, TrainLoss: 0.756, TestAcc: 90.3, TestLoss: 0.858
Epoch: 87, Lr:4.181203352191771e-06, TrainAcc: 99.1, TrainLoss: 0.758, TestAcc: 85.0, TestLoss: 0.878
Epoch: 88, Lr:4.181203352191771e-06, TrainAcc: 99.6, TrainLoss: 0.756, TestAcc: 91.2, TestLoss: 0.853
Epoch: 89, Lr:4.181203352191771e-06, TrainAcc: 99.8, TrainLoss: 0.752, TestAcc: 86.7, TestLoss: 0.878
Epoch: 90, Lr:3.972143184582182e-06, TrainAcc: 98.5, TrainLoss: 0.762, TestAcc: 87.6, TestLoss: 0.874
Epoch: 91, Lr:3.972143184582182e-06, TrainAcc: 100.0, TrainLoss: 0.751, TestAcc: 88.5, TestLoss: 0.865
Epoch: 92, Lr:3.972143184582182e-06, TrainAcc: 99.3, TrainLoss: 0.756, TestAcc: 85.0, TestLoss: 0.898
Epoch: 93, Lr:3.972143184582182e-06, TrainAcc: 99.3, TrainLoss: 0.758, TestAcc: 85.0, TestLoss: 0.873
Epoch: 94, Lr:3.972143184582182e-06, TrainAcc: 99.3, TrainLoss: 0.755, TestAcc: 85.8, TestLoss: 0.894
Epoch: 95, Lr:3.7735360253530726e-06, TrainAcc: 99.3, TrainLoss: 0.759, TestAcc: 85.8, TestLoss: 0.888
Epoch: 96, Lr:3.7735360253530726e-06, TrainAcc: 99.6, TrainLoss: 0.755, TestAcc: 86.7, TestLoss: 0.868
Epoch: 97, Lr:3.7735360253530726e-06, TrainAcc: 99.3, TrainLoss: 0.756, TestAcc: 78.8, TestLoss: 0.940
Epoch: 98, Lr:3.7735360253530726e-06, TrainAcc: 98.7, TrainLoss: 0.761, TestAcc: 85.0, TestLoss: 0.893
Epoch: 99, Lr:3.7735360253530726e-06, TrainAcc: 99.8, TrainLoss: 0.755, TestAcc: 85.0, TestLoss: 0.888
Epoch: 100, Lr:3.584859224085419e-06, TrainAcc: 98.9, TrainLoss: 0.763, TestAcc: 87.6, TestLoss: 0.866
Epoch: 101, Lr:3.584859224085419e-06, TrainAcc: 99.8, TrainLoss: 0.753, TestAcc: 86.7, TestLoss: 0.879
Epoch: 102, Lr:3.584859224085419e-06, TrainAcc: 99.3, TrainLoss: 0.758, TestAcc: 85.0, TestLoss: 0.879
Epoch: 103, Lr:3.584859224085419e-06, TrainAcc: 99.3, TrainLoss: 0.758, TestAcc: 85.0, TestLoss: 0.885
Epoch: 104, Lr:3.584859224085419e-06, TrainAcc: 98.9, TrainLoss: 0.758, TestAcc: 87.6, TestLoss: 0.871
Epoch: 105, Lr:3.4056162628811484e-06, TrainAcc: 99.8, TrainLoss: 0.755, TestAcc: 91.2, TestLoss: 0.853
Epoch: 106, Lr:3.4056162628811484e-06, TrainAcc: 99.3, TrainLoss: 0.753, TestAcc: 87.6, TestLoss: 0.872
Epoch: 107, Lr:3.4056162628811484e-06, TrainAcc: 99.8, TrainLoss: 0.755, TestAcc: 91.2, TestLoss: 0.861
Epoch: 108, Lr:3.4056162628811484e-06, TrainAcc: 99.8, TrainLoss: 0.754, TestAcc: 90.3, TestLoss: 0.859
Epoch: 109, Lr:3.4056162628811484e-06, TrainAcc: 99.8, TrainLoss: 0.753, TestAcc: 89.4, TestLoss: 0.870
Epoch: 110, Lr:3.2353354497370905e-06, TrainAcc: 99.6, TrainLoss: 0.754, TestAcc: 85.0, TestLoss: 0.878
Epoch: 111, Lr:3.2353354497370905e-06, TrainAcc: 99.3, TrainLoss: 0.760, TestAcc: 86.7, TestLoss: 0.869
Epoch: 112, Lr:3.2353354497370905e-06, TrainAcc: 99.8, TrainLoss: 0.750, TestAcc: 87.6, TestLoss: 0.870
Epoch: 113, Lr:3.2353354497370905e-06, TrainAcc: 100.0, TrainLoss: 0.752, TestAcc: 88.5, TestLoss: 0.870
Epoch: 114, Lr:3.2353354497370905e-06, TrainAcc: 99.6, TrainLoss: 0.755, TestAcc: 89.4, TestLoss: 0.865
Epoch: 115, Lr:3.073568677250236e-06, TrainAcc: 100.0, TrainLoss: 0.752, TestAcc: 88.5, TestLoss: 0.865
Epoch: 116, Lr:3.073568677250236e-06, TrainAcc: 99.8, TrainLoss: 0.751, TestAcc: 86.7, TestLoss: 0.877
Epoch: 117, Lr:3.073568677250236e-06, TrainAcc: 99.6, TrainLoss: 0.754, TestAcc: 89.4, TestLoss: 0.864
Epoch: 118, Lr:3.073568677250236e-06, TrainAcc: 99.3, TrainLoss: 0.759, TestAcc: 85.0, TestLoss: 0.894
Epoch: 119, Lr:3.073568677250236e-06, TrainAcc: 99.8, TrainLoss: 0.754, TestAcc: 87.6, TestLoss: 0.867
Epoch: 120, Lr:2.919890243387724e-06, TrainAcc: 99.6, TrainLoss: 0.755, TestAcc: 89.4, TestLoss: 0.860
Epoch: 121, Lr:2.919890243387724e-06, TrainAcc: 99.1, TrainLoss: 0.758, TestAcc: 86.7, TestLoss: 0.884
Epoch: 122, Lr:2.919890243387724e-06, TrainAcc: 100.0, TrainLoss: 0.749, TestAcc: 86.7, TestLoss: 0.879
Epoch: 123, Lr:2.919890243387724e-06, TrainAcc: 100.0, TrainLoss: 0.749, TestAcc: 87.6, TestLoss: 0.876
Epoch: 124, Lr:2.919890243387724e-06, TrainAcc: 99.8, TrainLoss: 0.749, TestAcc: 89.4, TestLoss: 0.866
Epoch: 125, Lr:2.7738957312183377e-06, TrainAcc: 99.3, TrainLoss: 0.764, TestAcc: 83.2, TestLoss: 0.895
Epoch: 126, Lr:2.7738957312183377e-06, TrainAcc: 100.0, TrainLoss: 0.747, TestAcc: 86.7, TestLoss: 0.875
Epoch: 127, Lr:2.7738957312183377e-06, TrainAcc: 100.0, TrainLoss: 0.748, TestAcc: 90.3, TestLoss: 0.859
Epoch: 128, Lr:2.7738957312183377e-06, TrainAcc: 99.8, TrainLoss: 0.752, TestAcc: 88.5, TestLoss: 0.871
Epoch: 129, Lr:2.7738957312183377e-06, TrainAcc: 99.8, TrainLoss: 0.750, TestAcc: 88.5, TestLoss: 0.866
Epoch: 130, Lr:2.6352009446574206e-06, TrainAcc: 100.0, TrainLoss: 0.748, TestAcc: 89.4, TestLoss: 0.873
Epoch: 131, Lr:2.6352009446574206e-06, TrainAcc: 99.8, TrainLoss: 0.749, TestAcc: 90.3, TestLoss: 0.861
Epoch: 132, Lr:2.6352009446574206e-06, TrainAcc: 100.0, TrainLoss: 0.746, TestAcc: 89.4, TestLoss: 0.868
Epoch: 133, Lr:2.6352009446574206e-06, TrainAcc: 99.8, TrainLoss: 0.750, TestAcc: 87.6, TestLoss: 0.867
Epoch: 134, Lr:2.6352009446574206e-06, TrainAcc: 99.6, TrainLoss: 0.754, TestAcc: 89.4, TestLoss: 0.868
Epoch: 135, Lr:2.5034408974245495e-06, TrainAcc: 100.0, TrainLoss: 0.748, TestAcc: 87.6, TestLoss: 0.873
Epoch: 136, Lr:2.5034408974245495e-06, TrainAcc: 99.6, TrainLoss: 0.754, TestAcc: 89.4, TestLoss: 0.863
Epoch: 137, Lr:2.5034408974245495e-06, TrainAcc: 100.0, TrainLoss: 0.749, TestAcc: 88.5, TestLoss: 0.860
Epoch: 138, Lr:2.5034408974245495e-06, TrainAcc: 99.8, TrainLoss: 0.751, TestAcc: 89.4, TestLoss: 0.861
Epoch: 139, Lr:2.5034408974245495e-06, TrainAcc: 99.8, TrainLoss: 0.754, TestAcc: 88.5, TestLoss: 0.853
Epoch: 140, Lr:2.378268852553322e-06, TrainAcc: 100.0, TrainLoss: 0.751, TestAcc: 91.2, TestLoss: 0.861
Epoch: 141, Lr:2.378268852553322e-06, TrainAcc: 100.0, TrainLoss: 0.755, TestAcc: 89.4, TestLoss: 0.852
Epoch: 142, Lr:2.378268852553322e-06, TrainAcc: 100.0, TrainLoss: 0.751, TestAcc: 88.5, TestLoss: 0.865
Epoch: 143, Lr:2.378268852553322e-06, TrainAcc: 99.8, TrainLoss: 0.752, TestAcc: 85.8, TestLoss: 0.872
Epoch: 144, Lr:2.378268852553322e-06, TrainAcc: 99.8, TrainLoss: 0.751, TestAcc: 85.0, TestLoss: 0.883
Epoch: 145, Lr:2.2593554099256557e-06, TrainAcc: 100.0, TrainLoss: 0.750, TestAcc: 88.5, TestLoss: 0.857
Epoch: 146, Lr:2.2593554099256557e-06, TrainAcc: 100.0, TrainLoss: 0.747, TestAcc: 89.4, TestLoss: 0.866
Epoch: 147, Lr:2.2593554099256557e-06, TrainAcc: 99.8, TrainLoss: 0.751, TestAcc: 91.2, TestLoss: 0.856
Epoch: 148, Lr:2.2593554099256557e-06, TrainAcc: 100.0, TrainLoss: 0.749, TestAcc: 88.5, TestLoss: 0.850
Epoch: 149, Lr:2.2593554099256557e-06, TrainAcc: 99.6, TrainLoss: 0.754, TestAcc: 92.0, TestLoss: 0.856
Epoch: 150, Lr:2.146387639429373e-06, TrainAcc: 99.8, TrainLoss: 0.748, TestAcc: 85.0, TestLoss: 0.883
Epoch: 151, Lr:2.146387639429373e-06, TrainAcc: 100.0, TrainLoss: 0.748, TestAcc: 89.4, TestLoss: 0.856
Epoch: 152, Lr:2.146387639429373e-06, TrainAcc: 100.0, TrainLoss: 0.750, TestAcc: 88.5, TestLoss: 0.854
Epoch: 153, Lr:2.146387639429373e-06, TrainAcc: 99.8, TrainLoss: 0.747, TestAcc: 90.3, TestLoss: 0.863
Epoch: 154, Lr:2.146387639429373e-06, TrainAcc: 100.0, TrainLoss: 0.747, TestAcc: 89.4, TestLoss: 0.849
Epoch: 155, Lr:2.039068257457904e-06, TrainAcc: 99.6, TrainLoss: 0.751, TestAcc: 87.6, TestLoss: 0.866
Epoch: 156, Lr:2.039068257457904e-06, TrainAcc: 99.8, TrainLoss: 0.751, TestAcc: 91.2, TestLoss: 0.855
Epoch: 157, Lr:2.039068257457904e-06, TrainAcc: 99.8, TrainLoss: 0.752, TestAcc: 90.3, TestLoss: 0.858
Epoch: 158, Lr:2.039068257457904e-06, TrainAcc: 99.6, TrainLoss: 0.752, TestAcc: 87.6, TestLoss: 0.867
Epoch: 159, Lr:2.039068257457904e-06, TrainAcc: 99.8, TrainLoss: 0.748, TestAcc: 88.5, TestLoss: 0.859
Epoch: 160, Lr:1.937114844585009e-06, TrainAcc: 100.0, TrainLoss: 0.748, TestAcc: 89.4, TestLoss: 0.849
Epoch: 161, Lr:1.937114844585009e-06, TrainAcc: 100.0, TrainLoss: 0.748, TestAcc: 86.7, TestLoss: 0.874
Epoch: 162, Lr:1.937114844585009e-06, TrainAcc: 99.3, TrainLoss: 0.754, TestAcc: 90.3, TestLoss: 0.859
Epoch: 163, Lr:1.937114844585009e-06, TrainAcc: 99.3, TrainLoss: 0.754, TestAcc: 90.3, TestLoss: 0.853
Epoch: 164, Lr:1.937114844585009e-06, TrainAcc: 100.0, TrainLoss: 0.748, TestAcc: 86.7, TestLoss: 0.868
Epoch: 165, Lr:1.8402591023557584e-06, TrainAcc: 99.3, TrainLoss: 0.754, TestAcc: 87.6, TestLoss: 0.861
Epoch: 166, Lr:1.8402591023557584e-06, TrainAcc: 99.8, TrainLoss: 0.750, TestAcc: 90.3, TestLoss: 0.853
Epoch: 167, Lr:1.8402591023557584e-06, TrainAcc: 99.3, TrainLoss: 0.759, TestAcc: 90.3, TestLoss: 0.854
Epoch: 168, Lr:1.8402591023557584e-06, TrainAcc: 99.6, TrainLoss: 0.753, TestAcc: 90.3, TestLoss: 0.854
Epoch: 169, Lr:1.8402591023557584e-06, TrainAcc: 100.0, TrainLoss: 0.746, TestAcc: 86.7, TestLoss: 0.869
Epoch: 170, Lr:1.7482461472379704e-06, TrainAcc: 100.0, TrainLoss: 0.747, TestAcc: 90.3, TestLoss: 0.858
Epoch: 171, Lr:1.7482461472379704e-06, TrainAcc: 99.8, TrainLoss: 0.751, TestAcc: 85.0, TestLoss: 0.870
Epoch: 172, Lr:1.7482461472379704e-06, TrainAcc: 99.8, TrainLoss: 0.749, TestAcc: 87.6, TestLoss: 0.870
Epoch: 173, Lr:1.7482461472379704e-06, TrainAcc: 100.0, TrainLoss: 0.748, TestAcc: 89.4, TestLoss: 0.853
Epoch: 174, Lr:1.7482461472379704e-06, TrainAcc: 98.2, TrainLoss: 0.764, TestAcc: 90.3, TestLoss: 0.857
Epoch: 175, Lr:1.6608338398760719e-06, TrainAcc: 99.8, TrainLoss: 0.751, TestAcc: 90.3, TestLoss: 0.849
Epoch: 176, Lr:1.6608338398760719e-06, TrainAcc: 99.3, TrainLoss: 0.753, TestAcc: 84.1, TestLoss: 0.892
Epoch: 177, Lr:1.6608338398760719e-06, TrainAcc: 100.0, TrainLoss: 0.746, TestAcc: 88.5, TestLoss: 0.866
Epoch: 178, Lr:1.6608338398760719e-06, TrainAcc: 99.1, TrainLoss: 0.758, TestAcc: 88.5, TestLoss: 0.864
Epoch: 179, Lr:1.6608338398760719e-06, TrainAcc: 100.0, TrainLoss: 0.750, TestAcc: 90.3, TestLoss: 0.861
Epoch: 180, Lr:1.577792147882268e-06, TrainAcc: 100.0, TrainLoss: 0.747, TestAcc: 89.4, TestLoss: 0.863
Epoch: 181, Lr:1.577792147882268e-06, TrainAcc: 100.0, TrainLoss: 0.747, TestAcc: 91.2, TestLoss: 0.851
Epoch: 182, Lr:1.577792147882268e-06, TrainAcc: 100.0, TrainLoss: 0.748, TestAcc: 90.3, TestLoss: 0.863
Epoch: 183, Lr:1.577792147882268e-06, TrainAcc: 100.0, TrainLoss: 0.746, TestAcc: 89.4, TestLoss: 0.855
Epoch: 184, Lr:1.577792147882268e-06, TrainAcc: 100.0, TrainLoss: 0.748, TestAcc: 90.3, TestLoss: 0.846
Epoch: 185, Lr:1.4989025404881547e-06, TrainAcc: 100.0, TrainLoss: 0.747, TestAcc: 89.4, TestLoss: 0.853
Epoch: 186, Lr:1.4989025404881547e-06, TrainAcc: 100.0, TrainLoss: 0.747, TestAcc: 88.5, TestLoss: 0.866
Epoch: 187, Lr:1.4989025404881547e-06, TrainAcc: 100.0, TrainLoss: 0.747, TestAcc: 87.6, TestLoss: 0.862
Epoch: 188, Lr:1.4989025404881547e-06, TrainAcc: 100.0, TrainLoss: 0.747, TestAcc: 86.7, TestLoss: 0.870
Epoch: 189, Lr:1.4989025404881547e-06, TrainAcc: 99.8, TrainLoss: 0.748, TestAcc: 87.6, TestLoss: 0.858
Epoch: 190, Lr:1.4239574134637468e-06, TrainAcc: 100.0, TrainLoss: 0.748, TestAcc: 90.3, TestLoss: 0.841
Epoch: 191, Lr:1.4239574134637468e-06, TrainAcc: 99.6, TrainLoss: 0.752, TestAcc: 87.6, TestLoss: 0.869
Epoch: 192, Lr:1.4239574134637468e-06, TrainAcc: 99.3, TrainLoss: 0.757, TestAcc: 88.5, TestLoss: 0.859
Epoch: 193, Lr:1.4239574134637468e-06, TrainAcc: 100.0, TrainLoss: 0.751, TestAcc: 85.0, TestLoss: 0.886
Epoch: 194, Lr:1.4239574134637468e-06, TrainAcc: 100.0, TrainLoss: 0.746, TestAcc: 92.0, TestLoss: 0.854
Epoch: 195, Lr:1.3527595427905593e-06, TrainAcc: 99.6, TrainLoss: 0.752, TestAcc: 86.7, TestLoss: 0.867
Epoch: 196, Lr:1.3527595427905593e-06, TrainAcc: 100.0, TrainLoss: 0.746, TestAcc: 90.3, TestLoss: 0.858
Epoch: 197, Lr:1.3527595427905593e-06, TrainAcc: 99.8, TrainLoss: 0.750, TestAcc: 84.1, TestLoss: 0.880
Epoch: 198, Lr:1.3527595427905593e-06, TrainAcc: 99.8, TrainLoss: 0.752, TestAcc: 87.6, TestLoss: 0.863
Epoch: 199, Lr:1.3527595427905593e-06, TrainAcc: 100.0, TrainLoss: 0.746, TestAcc: 89.4, TestLoss: 0.860
Epoch: 200, Lr:1.2851215656510314e-06, TrainAcc: 100.0, TrainLoss: 0.747, TestAcc: 87.6, TestLoss: 0.857
Epoch: 201, Lr:1.2851215656510314e-06, TrainAcc: 100.0, TrainLoss: 0.748, TestAcc: 88.5, TestLoss: 0.858
Epoch: 202, Lr:1.2851215656510314e-06, TrainAcc: 99.8, TrainLoss: 0.753, TestAcc: 87.6, TestLoss: 0.876
Epoch: 203, Lr:1.2851215656510314e-06, TrainAcc: 100.0, TrainLoss: 0.746, TestAcc: 91.2, TestLoss: 0.858
Epoch: 204, Lr:1.2851215656510314e-06, TrainAcc: 99.8, TrainLoss: 0.748, TestAcc: 90.3, TestLoss: 0.848
Epoch: 205, Lr:1.2208654873684798e-06, TrainAcc: 100.0, TrainLoss: 0.751, TestAcc: 90.3, TestLoss: 0.855
Epoch: 206, Lr:1.2208654873684798e-06, TrainAcc: 100.0, TrainLoss: 0.748, TestAcc: 90.3, TestLoss: 0.865
Epoch: 207, Lr:1.2208654873684798e-06, TrainAcc: 100.0, TrainLoss: 0.746, TestAcc: 88.5, TestLoss: 0.858
Epoch: 208, Lr:1.2208654873684798e-06, TrainAcc: 98.9, TrainLoss: 0.766, TestAcc: 88.5, TestLoss: 0.861

模型效果展示

损失
损失
准确度

准确度

总结与心得体会

可以发现逆置了BN和ReLU之后,模型的收敛速度更快,然后在测试集上的效果也更好。和作者的相比,我的效果提升给加明显。分析原因是作者的模型训练层数较深,提升的是模型的上限,而我的应该还没有收敛。由此可以得出结论逆置的BN和ReLU具有更强的特征提取能力,也有一定的表达能力的提升

这篇关于J2 - ResNet-50v2实战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/576969

相关文章

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Golang使用minio替代文件系统的实战教程

《Golang使用minio替代文件系统的实战教程》本文讨论项目开发中直接文件系统的限制或不足,接着介绍Minio对象存储的优势,同时给出Golang的实际示例代码,包括初始化客户端、读取minio对... 目录文件系统 vs Minio文件系统不足:对象存储:miniogolang连接Minio配置Min

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

滚雪球学Java(87):Java事务处理:JDBC的ACID属性与实战技巧!真有两下子!

咦咦咦,各位小可爱,我是你们的好伙伴——bug菌,今天又来给大家普及Java SE啦,别躲起来啊,听我讲干货还不快点赞,赞多了我就有动力讲得更嗨啦!所以呀,养成先点赞后阅读的好习惯,别被干货淹没了哦~ 🏆本文收录于「滚雪球学Java」专栏,专业攻坚指数级提升,助你一臂之力,带你早日登顶🚀,欢迎大家关注&&收藏!持续更新中,up!up!up!! 环境说明:Windows 10

springboot实战学习(1)(开发模式与环境)

目录 一、实战学习的引言 (1)前后端的大致学习模块 (2)后端 (3)前端 二、开发模式 一、实战学习的引言 (1)前后端的大致学习模块 (2)后端 Validation:做参数校验Mybatis:做数据库的操作Redis:做缓存Junit:单元测试项目部署:springboot项目部署相关的知识 (3)前端 Vite:Vue项目的脚手架Router:路由Pina:状态管理Eleme

深度学习实战:如何利用CNN实现人脸识别考勤系统

1. 何为CNN及其在人脸识别中的应用 卷积神经网络(CNN)是深度学习中的核心技术之一,擅长处理图像数据。CNN通过卷积层提取图像的局部特征,在人脸识别领域尤其适用。CNN的多个层次可以逐步提取面部的特征,最终实现精确的身份识别。对于考勤系统而言,CNN可以自动从摄像头捕捉的视频流中检测并识别出员工的面部。 我们在该项目中采用了 RetinaFace 模型,它基于CNN的结构实现高效、精准的