【Python机器学习】线性模型——lasso

2024-01-06 16:20

本文主要是介绍【Python机器学习】线性模型——lasso,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

除了岭回归,还有一种正则化的线性回归是lasso,与岭回归相同,使用lasso也是约束系数使其接近于0,但方法不同,叫做L1正则化。L1正则化的结果是使用lasso时某些系数刚好为0。说明某些特征被模型完全忽略。

同样以波士顿房价数据集为例:

import mglearn.datasets
from sklearn.model_selection import train_test_split
from sklearn.linear_model import Ridge,LinearRegression,Lasso
from sklearn.neighbors import KNeighborsRegressor
import matplotlib.pyplot as plt
import numpy as npplt.rcParams['font.sans-serif']=['SimHei']X,y=mglearn.datasets.load_extended_boston()
X_train,X_test,y_train,y_test=train_test_split(X,y,random_state=0
)lasso=Lasso().fit(X_train,y_train)
print('训练集score:{:.2f}'.format(lasso.score(X_train,y_train)))
print('测试集score:{:.2f}'.format(lasso.score(X_test,y_test)))
print('用到的特征:{}'.format(np.sum(lasso.coef_!=0)))

从结果可以看出,Lasso在训练集和测试集上表现都很差,说明存在欠拟合,因为在数据集的105个特征中只用到了4个。

与岭回归类似,Lasso也存在一个正则化参数alpha,可以控制系数趋向于0的强度,为了减低欠拟合成都,可以减小alpha,同时,增加max_iter(运行迭代的最大次数)


lasso_001=Lasso(alpha=0.01,max_iter=100000).fit(X_train,y_train)
print('训练集score:{:.2f}'.format(lasso_001.score(X_train,y_train)))
print('测试集score:{:.2f}'.format(lasso_001.score(X_test,y_test)))
print('用到的特征:{}'.format(np.sum(lasso_001.coef_!=0)))lasso_00001=Lasso(alpha=0.0001,max_iter=100000).fit(X_train,y_train)
print('训练集score:{:.2f}'.format(lasso_00001.score(X_train,y_train)))
print('测试集score:{:.2f}'.format(lasso_00001.score(X_test,y_test)))
print('用到的特征:{}'.format(np.sum(lasso_00001.coef_!=0)

 

alpha变小可以拟合一个更复杂的模型,在训练集和测试集上 的表现也更好,但是alpha不能设置的太小,否则就会消除正则化的效果,并出现过拟合,得到与线性回归类似的模型。

对不同alpha系数的结果进行可视化对比:

import mglearn.datasets
from sklearn.model_selection import train_test_split
from sklearn.linear_model import Ridge,LinearRegression,Lasso
from sklearn.neighbors import KNeighborsRegressor
import matplotlib.pyplot as plt
import numpy as npplt.rcParams['font.sans-serif']=['SimHei']X,y=mglearn.datasets.load_extended_boston()
X_train,X_test,y_train,y_test=train_test_split(X,y,random_state=0
)
lasso=Lasso().fit(X_train,y_train)
lasso_001=Lasso(alpha=0.01,max_iter=100000).fit(X_train,y_train)
lasso_00001=Lasso(alpha=0.0001,max_iter=100000).fit(X_train,y_train)
ridge_01=Ridge(alpha=0.1).fit(X_train,y_train)plt.plot(lasso.coef_,'s',label='lasso alpha=1')
plt.plot(lasso_001.coef_,'^',label='lasso alpha=0.01')
plt.plot(lasso_00001.coef_,'v',label='lasso alpha=0.0001')plt.plot(ridge_01.coef_,'o',label='岭 alpha=0.1')
plt.xlabel('index')
plt.ylabel('系数大小')
plt.ylim(-25,25)
plt.legend(ncol=2,loc=(0,1.05))
plt.show()

在alpha=1时,大部分系数大小都是0,而且其他系数也很小,alpha=0.01时,大部分特征等于0,alpha=0.0001时,大部分特征都不等于0且很大,就是一个正则化很弱的模型了 。

alpha=0.1的岭回归模型的预测功能与alpha=0.01的Lasso模型类似,但岭回归的所有系数都不为0。

在实践中,一般首选岭回归,但如果特征很多,且只有几个事重要的,那选择Lasso可能更好,且更容易解释。

这篇关于【Python机器学习】线性模型——lasso的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/576903

相关文章

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Python进阶之Excel基本操作介绍

《Python进阶之Excel基本操作介绍》在现实中,很多工作都需要与数据打交道,Excel作为常用的数据处理工具,一直备受人们的青睐,本文主要为大家介绍了一些Python中Excel的基本操作,希望... 目录概述写入使用 xlwt使用 XlsxWriter读取修改概述在现实中,很多工作都需要与数据打交

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的

基于Python开发电脑定时关机工具

《基于Python开发电脑定时关机工具》这篇文章主要为大家详细介绍了如何基于Python开发一个电脑定时关机工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 简介2. 运行效果3. 相关源码1. 简介这个程序就像一个“忠实的管家”,帮你按时关掉电脑,而且全程不需要你多做

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa