【Python机器学习】线性模型——lasso

2024-01-06 16:20

本文主要是介绍【Python机器学习】线性模型——lasso,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

除了岭回归,还有一种正则化的线性回归是lasso,与岭回归相同,使用lasso也是约束系数使其接近于0,但方法不同,叫做L1正则化。L1正则化的结果是使用lasso时某些系数刚好为0。说明某些特征被模型完全忽略。

同样以波士顿房价数据集为例:

import mglearn.datasets
from sklearn.model_selection import train_test_split
from sklearn.linear_model import Ridge,LinearRegression,Lasso
from sklearn.neighbors import KNeighborsRegressor
import matplotlib.pyplot as plt
import numpy as npplt.rcParams['font.sans-serif']=['SimHei']X,y=mglearn.datasets.load_extended_boston()
X_train,X_test,y_train,y_test=train_test_split(X,y,random_state=0
)lasso=Lasso().fit(X_train,y_train)
print('训练集score:{:.2f}'.format(lasso.score(X_train,y_train)))
print('测试集score:{:.2f}'.format(lasso.score(X_test,y_test)))
print('用到的特征:{}'.format(np.sum(lasso.coef_!=0)))

从结果可以看出,Lasso在训练集和测试集上表现都很差,说明存在欠拟合,因为在数据集的105个特征中只用到了4个。

与岭回归类似,Lasso也存在一个正则化参数alpha,可以控制系数趋向于0的强度,为了减低欠拟合成都,可以减小alpha,同时,增加max_iter(运行迭代的最大次数)


lasso_001=Lasso(alpha=0.01,max_iter=100000).fit(X_train,y_train)
print('训练集score:{:.2f}'.format(lasso_001.score(X_train,y_train)))
print('测试集score:{:.2f}'.format(lasso_001.score(X_test,y_test)))
print('用到的特征:{}'.format(np.sum(lasso_001.coef_!=0)))lasso_00001=Lasso(alpha=0.0001,max_iter=100000).fit(X_train,y_train)
print('训练集score:{:.2f}'.format(lasso_00001.score(X_train,y_train)))
print('测试集score:{:.2f}'.format(lasso_00001.score(X_test,y_test)))
print('用到的特征:{}'.format(np.sum(lasso_00001.coef_!=0)

 

alpha变小可以拟合一个更复杂的模型,在训练集和测试集上 的表现也更好,但是alpha不能设置的太小,否则就会消除正则化的效果,并出现过拟合,得到与线性回归类似的模型。

对不同alpha系数的结果进行可视化对比:

import mglearn.datasets
from sklearn.model_selection import train_test_split
from sklearn.linear_model import Ridge,LinearRegression,Lasso
from sklearn.neighbors import KNeighborsRegressor
import matplotlib.pyplot as plt
import numpy as npplt.rcParams['font.sans-serif']=['SimHei']X,y=mglearn.datasets.load_extended_boston()
X_train,X_test,y_train,y_test=train_test_split(X,y,random_state=0
)
lasso=Lasso().fit(X_train,y_train)
lasso_001=Lasso(alpha=0.01,max_iter=100000).fit(X_train,y_train)
lasso_00001=Lasso(alpha=0.0001,max_iter=100000).fit(X_train,y_train)
ridge_01=Ridge(alpha=0.1).fit(X_train,y_train)plt.plot(lasso.coef_,'s',label='lasso alpha=1')
plt.plot(lasso_001.coef_,'^',label='lasso alpha=0.01')
plt.plot(lasso_00001.coef_,'v',label='lasso alpha=0.0001')plt.plot(ridge_01.coef_,'o',label='岭 alpha=0.1')
plt.xlabel('index')
plt.ylabel('系数大小')
plt.ylim(-25,25)
plt.legend(ncol=2,loc=(0,1.05))
plt.show()

在alpha=1时,大部分系数大小都是0,而且其他系数也很小,alpha=0.01时,大部分特征等于0,alpha=0.0001时,大部分特征都不等于0且很大,就是一个正则化很弱的模型了 。

alpha=0.1的岭回归模型的预测功能与alpha=0.01的Lasso模型类似,但岭回归的所有系数都不为0。

在实践中,一般首选岭回归,但如果特征很多,且只有几个事重要的,那选择Lasso可能更好,且更容易解释。

这篇关于【Python机器学习】线性模型——lasso的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/576903

相关文章

Python将博客内容html导出为Markdown格式

《Python将博客内容html导出为Markdown格式》Python将博客内容html导出为Markdown格式,通过博客url地址抓取文章,分析并提取出文章标题和内容,将内容构建成html,再转... 目录一、为什么要搞?二、准备如何搞?三、说搞咱就搞!抓取文章提取内容构建html转存markdown

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专