MATLAB - MPC - 优化问题(Optimization Problem)

2024-01-06 16:12

本文主要是介绍MATLAB - MPC - 优化问题(Optimization Problem),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

系列文章目录


前言

模型预测控制可在每个控制间隔内解决一个优化问题,具体来说就是二次规划(QP)。求解结果决定了被控对象在下一个控制间隔之前使用的操纵变量(MV)。

该 QP 问题具有以下特点:

  • 目标或 "成本 "函数 - 要最小化的控制器性能的非负标量。
  • 约束条件 - 解决方案必须满足的条件,如 MV 和被控对象输出变量的物理边界。
  • 决策 - 在满足约束条件的同时使成本函数最小化的 MV 调整。

下文将详细介绍这些功能。


一、标准代价函数

标准成本函数是四个项的总和,每个项都侧重于控制器性能的一个特定方面,如下所示:

$J(z k)=J_{y}(z k)+J_{u}(z k)+J_{\Delta u}(z k)+J_{e}(z k).$

这里,zk 是 QP 决策。如下所述,每个项都包含权重,可帮助您平衡相互竞争的目标。虽然 MPC 控制器提供了默认权重,但您通常需要对其进行调整,以适应您的应用。

1.1 输出参考跟踪


在大多数应用中,控制器必须将选定的被控对象输出保持在或接近指定的参考值。MPC 控制器使用以下标量性能指标进行输出参考跟踪:

$J_{y}(z k)=\sum_{​{j}=1}^{n_{y}}\ \sum_{​{i}=1}^p\left\{\frac{w_{​{i},{j}}^{y}}{s_{​{j}}^{y}}[r_{​{j}}(k+i\vert k)-y_{​{j}}(k+i\vert k)]\right\}^{​{2}}.$

此处

  • k - 当前控制间隔。
  • p - 预测范围(区间数)。
  • ny - 被控对象输出变量的个数。
  • zk - QP 决策,取值为  

                 $z_k^T=\left[u(k|k)^{T}\quad u(k+1|k)^{T}\ \ldots\ \ u(k+p-1|k)^{T}\quad\it\epsilon_{k}\right].$

  • yj(k+i|k) - 第 j 个被控对象在第 i 个预测水平步的输出预测值,单位为工程单位。
  • rj(k+i|k) - 第 j 个被控对象在第 i 个预测水平步的输出参考值,单位为工程单位。
  • s_{​{j}}^{y} - 第 j 个被控对象产量的比例因子,单位为工程单位。
  • w_{​{i},{j}}^{y} - 第 i 个预测水平步的第 j 个被控对象输出的调整权重(无量纲)。

值 ny、p、s_{​{j}}^{y}w_{​{i},{j}}^{y} 是恒定的控制器规格。控制器接收整个预测范围内的参考值 rj(k+i|k)。控制器使用状态观测器来预测被控对象的输出 yj(k+i|k),这些输出取决于受控变量调整 (zk)、测量干扰 (MD) 和状态估计值。在间隔 k 时,可获得控制器状态估计值和 MD 值。因此,Jy 仅是 zk 的函数。 

1.2 操纵变量跟踪


在某些应用中,例如当被控对象的输出多于操纵变量时,控制器必须将选定的操纵变量 (MV) 保持在或接近指定的目标值。MPC 控制器使用以下标量性能指标进行操纵变量跟踪: 

$J_{u}(z k)=\sum_{j=1}^{n_{u}}\sum_{i=0}^{p-1}\left\{\frac{w_{i,j}^{u}}{s_{j}^{u}}[u_{j}(k+i\vert k)-u_{j,l a r g e t}(k+i\vert k)]\right\}^{2}.$

此处

  • k - 当前控制间隔。
  • p - 预测范围(区间数)。
  • nu - 受控变量的数量。
  • zk - QP 决策,取值为
  • uj,target(k+i|k) - 第 j 个 MV 在第 i 个预测水平步的目标值,单位为工程单位。
  • s_{​{j}}^{u} - 第 j 个 MV 的比例因子,单位为工程单位。
  • w_{​{i},{j}}^{u} - 第 j 个 MV 在第 i 个预测水平步的调整权重(无量纲)。

数值 nu、p、s_{​{j}}^{u}w_{​{i},{j}}^{u} 是恒定的控制器规格。控制器接收整个范围内的 uj,target(k+i|k) 值。控制器利用状态观测器预测被控对象的输出。因此,Ju 只是 zk 的函数。

1.3 操纵变量移动抑制


大多数应用都喜欢小的 MV 调整(移动)。MPC 常量使用以下标量性能指标来抑制操纵变量移动:

$J_{\Delta u}(z_{k})=\sum_{j=1}^{n_{u}}\sum_{i=0}^{p-1}\left\{\frac{\displaystyle w_{i,j}^{\Delta u}}{\displaystyle s_{j}^{​{u}}}[u_{j}(k+i\vert k)-u_{j}(k+i-1\vert k)]\right\}^{2}.$

此处

  • k - 当前控制间隔。
  • p - 预测范围(区间数)。
  • ny - 被控对象输出变量的个数。
  • zk - QP 决策,取值为  

                 $z_k^T=\left[u(k|k)^{T}\quad u(k+1|k)^{T}\ \ldots\ \ u(k+p-1|k)^{T}\quad\it\epsilon_{k}\right].$

  • s_{​{j}}^{u} - 第 j 个 MV 的比例因子,单位为工程单位。
  • w_{i,j}^{\Delta u} - 第 j 个 MV 运动在第 i 个预测水平步的调整权重(无量纲)。

$n_{u},\,p_{,}\,\,s_{j}^{u},w_{i,j}^{\Delta u}$的值是控制器的常数。u(k-1|k) = u(k-1),是上一个控制区间的已知 MV。JΔu 仅是 zk 的函数。

此外,控制区间 m < p(或 MV 阻塞)会限制某些 MV 移动为零。

1.4 违反约束

在实践中,违反约束可能是不可避免的。软约束允许在这种情况下获得可行的 QP 解决方案。MPC 控制器采用一个无量纲、非负的松弛变量 εk,它量化了最坏情况下的约束违规。(见约束条件)相应的性能指标为

$J_{\varepsilon}(z k)=\rho_{\varepsilon}\varepsilon_{k}^{2}.$

这里

zk - QP 决策,取值为

$z_{k}^{T}=\bigl[u(k|k)^{T}\ \ \ u(k+1|k)^{T}\ \ \ldots\ \ u(k+p-1|k)^{T}\ \ \epsilon_{k}\bigr].$

εk - 控制区间 k 的松弛变量(无量纲)。

ρε - 违反约束条件的惩罚权重(无量纲)。

二、 替代成本函数

您可以选择使用以下替代标准成本函数的方法:

$J(z_{k})=\sum_{i=0}^{p-1}\left\{\left[e_{y}^{T}(k+i)Q e_{y}(k+i)\right]+\left[e_{u}^{T}(k+i)R_{u}e_{u}(k+i)\right]+\left[\Delta u^{T}(k+i)R_{\Delta u}\Delta u(k+i)\right]\right\}+\rho_{\epsilon}\varepsilon_{k}^{2}.$

这里,Q(ny-by-ny)、Ru 和 RΔu(nu-by-nu)是正半无穷权重矩阵,并且: 

$\begin{array}{c}{​{e_{y}(i+k)=S_{y}^{-1}[r(k+i+1|k)-y(k+i+1|k)]}}\\ {​{e_{u}(i+k)=S_{u}^{-1}[u_{t a r g e t}(k+i|k)-u(k+i|k)]}}\\ {​{\Delta u(k+i)=S_{u}^{-1}[u(k+i]k)-u(k+i-1|k)].}}\end{array}$

也是、

Sy - 被控对象输出可变比例系数的对角矩阵,单位为工程单位。

Su - 以工程单位表示的 MV 比例因子对角矩阵。

r(k+1|k) - 第 i 个预测水平步的 ny 个被控对象输出参考值,单位为工程单位。

y(k+1|k) - 第 i 个预测水平步的 ny 个被控对象的工厂产出,单位为工程单位。

zk - QP 决策,取值为

$z_{k}^{T}=\bigl[u(k|k)^{T}\ \ \ u(k+1|k)^{T}\ \ \ldots\ \ u(k+p-1|k)^{T}\ \ \epsilon_{k}\bigr].$

utarget(k+i|k) - u(k+i|k) 对应的 nu MV 目标值,单位为工程单位。

与标准成本函数一样,输出预测使用状态观测器。

替代成本函数允许非对角线加权,但要求每个预测水平步的权重相同。

如果满足以下条件,替代成本函数和标准成本函数是相同的:

  • 标准成本函数采用的权重 w , 和 w 相对于指数 i = 1:p 是常数。
  • 矩阵 Q、Ru 和 RΔu 是对角线,对角元素是这些权重的平方。

三、约束条件


某些约束条件是隐含的。例如,控制范围 m < p(或 MV 阻塞)会强制某些 MV 增量为零,而用于被控对象输出预测的状态观测器是一组隐式相等约束。您可以配置的显式约束如下所述。

3.1 被控对象输出、MV 和 MV 增量的界限

最常见的 MPC 约束是边界,如下所示。

$\frac{y j,m i n(i)}{s_{j}^{y}}-\epsilon_{k}V_{j,m i n}^{y}(i)\leq\frac{y j(k+i| k)}{s_{j}^{y}}\leq\frac{y j,m a x(i)}{s_{j}^{y}}+\epsilon_{k}V_{j,m a x}^{y}(i),\qquad i=1:p,\qquad j=1:n_{y}$

$\frac{u j,m i n(i)}{s_{j}^{u}}-\epsilon k V_{j,m i n}^{u}(i)\leq\frac{u j(k+i-1|k)}{s_{j}^{u}}\leq\frac{u j,m a x(i)}{s_{j}^{u}}+\epsilon k V_{j,m a x}^{u}(i),\quad i=1:p,\quad\quad j=1:n u\quad$

$\frac{\Delta u_{j,m i n}(i)}{s_{j}^{u}}-\epsilon k V_{j,m i n}^{\Delta u}(i)\leq\frac{\Delta u_{j}(k+i-1|k)}{s_{j}^{u}}\leq\frac{\Delta u_{j,m a x}(i)}{s_{j}^{u}}+\epsilon k V_{j,m a x}^{\Delta u}(i),\quad i=1:p,\quad\quad j=1:n u,$ 

这里的 V 参数(ECR 值)是无量纲控制器常数,类似于成本函数权重,但用于约束软化(参见约束软化)。此外还有

εk - 用于约束软化的标量 QP 松弛变量(无量纲)。

syj - 第 j 个被控对象输出的比例因子,单位为工程单位。

suj - 第 j 个 MV 的比例因子,单位为工程单位。

yj,min(i)、yj,max(i) - 第 j 个被控对象在第 i 个预测水平步的产量下限和上限,单位为工程单位。

uj,min(i)、uj,max(i) - 第 j 个 MV 在第 i 个预测水平步的下限和上限,单位为工程单位。

Δuj,min(i)、Δuj,max(i) - 第 i 个预测水平步的第 j 个 MV 增量的下限和上限,单位为工程单位。

除松弛变量非负条件外,上述所有约束条件都是可选的,默认为非活动状态(即初始化为无限极限值)。要包含约束条件,必须在设计控制器时指定有限极限值。

四、QP 矩阵

本节介绍与优化问题中描述的模型预测控制优化问题相关的矩阵。

4.1 预测

假设输入干扰模型中描述的干扰模型为单位增益,即 d(k) = nd(k) 为白高斯噪声。可以将此问题表示为

${x\leftarrow \begin{bmatrix} x\\ x_d \end{bmatrix},A\leftarrow \begin{bmatrix} A & B_d\bar{C} \\ 0 & \bar{A} \end{bmatrix},B_u\leftarrow \begin{bmatrix}B_u\\ 0\end{bmatrix},B_v\leftarrow \begin{bmatrix}B_v\\ 0\end{bmatrix},B_d \leftarrow \begin{bmatrix}B_d\bar{D}\\ \bar{B}\end{bmatrix},C\leftarrow \begin{bmatrix} C & D_d\bar{C} \end{bmatrix}}$

那么,预测模型就是

$x(k+1)=A x(k)+B_{u}u(k)+B_{\nu}\nu(k)+B_{d}n_{d}(k)$

$y(k)=C x(k)+D_{\nu}\nu(k)+D_{d}n_{d}(k)$

接下来,考虑预测模型在时间 k=0 时的未来轨迹问题。对所有预测时刻 i 设置 nd(i)=0,得到 

$y(i|0)=C\left[A^{i}x(0)+\sum_{h=0}^{i-1}A^{i-1}\left(B_{u}\left({​{u(-1)+\sum_{j=0}^{h}}{\Delta u(j)}}\right)+B_{\nu}v(h)\right)\right]+D_{\nu}v(i)$

 该方程给出的解是

$\left[\begin{array}{l}{​{y(1)}}\\ {​{\cdots}}\\ {​{y(p)}}\end{array}\right]=S_{x}x(0)+S_{u1}u(-1)+S_{u}\left[\begin{array}{c}{​{\Delta u(0)}}\\ {​{\cdots}}\\ {​{\Delta u(p-1)}}\end{array}\right]+H_{v}\left[\begin{array}{l}{​{\nu(0)}}\\ {​{\cdots}}\\ {​{\nu(p)}}\end{array}\right]$

其中

$S_{x}=\left(\begin{array}{l}{​{C A}}\\ {​{C A^{2}}}\\ {​{\dots}}\\ {​{C A^{p}}}\end{array}\right)\left.\in\mathfrak{R}^{p n_{y}\times n_{x}},S_{u1}=\left[\begin{array}{l}{​{C B_{u}}}\\ {​{C B_{u}+C A B_{u}}}\\ {​{\dots}}\\ {​{\sum_{h=0}^{p-1}C A^{h}B_{u}}}\end{array}\right]\right.\in\mathfrak{R}^{p n_{y}\times n_{u}}$

S_{u}=\begin{bmatrix} {C B_{u}} & 0 & \cdots & 0 \\ {C B_{u}+C A B_{u}} & {C B_{u}} & \cdots & 0 \\ \cdots&\cdots & \cdots&\cdots \\\sum_{h=0}^{p-1}C A^{h}B_{u} & \sum_{h=0}^{p-2}C A^{h}B_{u}&\cdots &{C B_{u}} \end{bmatrix}\in\mathfrak{R}^{p n_{y}\times n_{u}}

${H_{v}=\begin{bmatrix} {C B_{v}} & D_v & 0 & \cdots & 0 \\ {CA B_{v}} & {C B_{v}} &D_v& \cdots & 0 \\ \cdots&\cdots & \cdots&\cdots&\cdots \\\sum_{h=0}^{p-1}C A^{h}B_{v} & \sum_{h=0}^{p-2}C A^{h}B_{v}&\sum_{h=0}^{p-3}C A^{h}B_{v}&\cdots &{D_v} \end{bmatrix}\in\mathfrak{R}^{p n_{y}\times (p+1)n}}$

4.2 优化变量

设 m 为自由控制移动的次数,设 z= [z0; ...; zm-1]。那么 

$\left[\begin{array}{c}{​{\Delta u(0)}}\\ {​{\ldots}}\\ {​{\Delta u(p-1)}}\end{array}\right]=J M\left[\begin{array}{c}{​{z0}}\\ {​{z m-1}}\end{array}\right]$

其中,JM 取决于阻塞动作的选择。z0、......、zm-1 与松弛变量ɛ 一起构成了优化问题的自由优化变量。在系统只有一个操纵变量的情况下,z0、......、zm-1 是标量。

考虑下图中描述的阻塞动作。

阻塞移动: 移动 = [2 3 2] 的输入和输入增量

这个图形对应于选择 moves=[2 3 2],或者等价于 u(0)=u(1),u(2)=u(3)=u(4),u(5)=u(6),Δ u(0)=z0,Δ u(2)=z1,Δ u(5)=z2,Δ u(1)=Δ u(3)=Δ u(4)=Δ u(6)=0.

那么,相应的矩阵 JM 为

$J_M=\begin{array}{r}{\left[{\begin{array}{r r r}{I}&{0}&{0}\\ {0}&{0}&{0}\\ {0}&{I}&{0}\\ {0}&{0}&{0}\\ {0}&{0}&{0}\\ {0}&{0}&{I}\\ {0}&{0}&{0}\end{array}}\right]}\end{array}$

有关操纵变量阻塞的更多信息,请参阅操纵变量阻塞。

4.3 成本函数

标准形式。 要优化的函数是

$J(z,\varepsilon)=\left ({\begin{bmatrix}u(0)\\ \dots\\ u(p-1)\end{bmatrix} } - {\begin{bmatrix}u_{target}(0)\\ \dots\\ u_{target}(p-1)\end{bmatrix} }\right )^T W_u^2 \left ({\begin{bmatrix}u(0)\\ \dots\\ u(p-1)\end{bmatrix} } - {\begin{bmatrix}u_{target}(0)\\ \dots\\ u_{target}(p-1)\end{bmatrix} }\right ) + {\begin{bmatrix}\Delta u(0)\\ \dots\\ \Delta u(p-1)\end{bmatrix}^T { W}_{\Delta u}^{2} {\begin{bmatrix}\Delta u(0)\\ \dots\\ \Delta u(p-1)\end{bmatrix}} }$

${+ \left ({\begin{bmatrix}y(1)\\ \dots\\ y(p)\end{bmatrix} }-{\begin{bmatrix}r(1)\\ \dots\\ r(p)\end{bmatrix} } \right )^T{ W}_{y}^{2} \left ({\begin{bmatrix}y(1)\\ \dots\\ y(p)\end{bmatrix} }-{\begin{bmatrix}r(1)\\ \dots\\ r(p)\end{bmatrix} } \right ) + \rho_{\mathcal{E}}{\mathcal{E}}^{2}}$ 

其中

$W_{u}=\mathrm{diag}\!\left({w}_{0,1}^{u},{w}_{0,2}^{u},...,{w}_{0,n}^{u},...,{w}_{p-1,1}^{u}\!,{w}_{p-1,2}^{u}\!,{w}_{p-1,2}^{u}\!,\dots,{w}_{p-1,n}^{u}\!\right)$

$W\Delta u=\mathrm{diag}\biggl(w_{0,1}^{\Delta u},w_{0,2}^{\Delta u},...,w_{0,n_{u}}^{\Delta u},...,w_{p-1,1}^{\Delta u},w_{p}^{\Delta u},...,w_{p-1,n_{u}}^{\Delta u}\biggr)$ 

$W_{y}=\mathrm{diag}\!\left(w_{1,1}^{y},w_{1,2}^{y}\!\cdot\!...,w_{1,n_{y}}^{y},...,w_{p,1}^{y},w_{p,2}^{y}\!....,w_{p,n_{y}}^{y}\right)$ 

最后,在代入 u(k)、Δu(k)、y(k)之后,J(z) 可重写为

$J(z,\varepsilon)=\rho_{\mathcal{E}}\varepsilon^{2}+z^{T}K\Delta u z+ 2\left ( {\begin{bmatrix}r(1)\\ \dots\\ r(p)\end{bmatrix} }^T K_r + {\begin{bmatrix}v(0)\\ \dots\\ v(p)\end{bmatrix} }^T K_v + u(-1)^{T}K_u + {\begin{bmatrix}u_{target}(0)\\ \dots\\ u_{target}(p-1)\end{bmatrix} }^T K_{ut} + +\;x(0)^{T}K x\right )z+{C}_{y}W_{y} c {y}++{C}_{u}W_{u} c {u}$其中

$c_{y}=S_{X}x(0)+S_{u}1u(-1)+H_{v}\left[\begin{array}{l}{​{v(1)}}\\ {​{\cdots}}\\ {​{v(p)}}\end{array}\right]-\left[\begin{array}{l}{​{r(1)}}\\ {​{\cdots}}\\ {​{r(p)}}\end{array}\right]$ 

注意事项

您可能希望 QP 问题保持严格的凸性。如果 Hessian 矩阵 KΔU 的条件数大于 1012,请在每个对角项上添加 10*sqrt(eps)。只有当所有输入率都未受惩罚(WΔu=0)时,才能使用此解决方案(请参阅 mpc 对象的权重属性)。

替代成本函数。  如果使用 "替代成本函数 "中所示的替代成本函数,则等式 1 由以下公式代替:

$\begin{array}{l}{​{W_{u}={\mathrm{blkdiag}}(R_{u},\ldots,R_{u})}}\\ {​{W_{\Delta u}={\mathrm{blkdiag}}(R_{\Delta u,\ldots,R_{\Delta u})}}}\\ {​{W_{y}={\mathrm{blkdiag}}(Q,\ldots,Q)}}\end{array}$

在这种情况下,分块对角矩阵重复 p 次,例如,预测范围内每一步重复一次。

您也可以选择使用标准形式和替代形式的组合。更多信息,请参阅 mpc 对象的权重属性。

约束条件 接下来,考虑输入、输入增量和输出的限制以及约束条件 ɛ≥ 0。

 

注释

为减少计算量,控制器会自动消除无关的约束条件,如无限边界。因此,实时使用的约束集可能远小于本节建议的约束集。

与计算成本函数类似,可以将 u(k)、Δu(k)、y(k) 代入,得到

这篇关于MATLAB - MPC - 优化问题(Optimization Problem)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/576881

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

解决systemctl reload nginx重启Nginx服务报错:Job for nginx.service invalid问题

《解决systemctlreloadnginx重启Nginx服务报错:Jobfornginx.serviceinvalid问题》文章描述了通过`systemctlstatusnginx.se... 目录systemctl reload nginx重启Nginx服务报错:Job for nginx.javas

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

vue解决子组件样式覆盖问题scoped deep

《vue解决子组件样式覆盖问题scopeddeep》文章主要介绍了在Vue项目中处理全局样式和局部样式的方法,包括使用scoped属性和深度选择器(/deep/)来覆盖子组件的样式,作者建议所有组件... 目录前言scoped分析deep分析使用总结所有组件必须加scoped父组件覆盖子组件使用deep前言

解决Cron定时任务中Pytest脚本无法发送邮件的问题

《解决Cron定时任务中Pytest脚本无法发送邮件的问题》文章探讨解决在Cron定时任务中运行Pytest脚本时邮件发送失败的问题,先优化环境变量,再检查Pytest邮件配置,接着配置文件确保SMT... 目录引言1. 环境变量优化:确保Cron任务可以正确执行解决方案:1.1. 创建一个脚本1.2. 修