OpenCV-Python(25):Hough直线变换

2024-01-05 19:12

本文主要是介绍OpenCV-Python(25):Hough直线变换,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目标

  • 理解霍夫变换的概念
  • 学习如何在一张图片中检测直线
  • 学习函数cv2.HoughLines()和cv2.HoughLinesP()

原理

        霍夫变换在检测各种形状的的技术中非常流行。如果你要检测的形状可以用数学表达式写出来,你就可以是使用霍夫变换检测它。即使检测的形状存在一点破坏或者扭曲也可以使用。我们下面就看看如何使用霍夫变换检测直线。

        一条直线可以用数学表达式y = mx + c 或者ρ = x cos θ + y sin θ 表示。ρ 是从原点到直线的垂直距离,θ 是直线的垂线与横轴顺时针方向的夹(如果你使用的坐标系不同方向也可能不同,我是按OpenCV 使用的坐标系描述的)。如下图所示:

        所以如果一条线在原点下方经过,ρ 的值就应该大于0度小于180。但是如果从原点上方经过的话,角度不是大于180也是小于180,但ρ 的值小于0。垂直的线角度为0 度,水平线的角度为90 度。 

        让我们来看看霍夫变换是如何工作的。每一条直线都可以用(ρ, θ) 表示。所以我们先创建一个2D 数组(累加器),初始化累加器,所有的值都为0。行表示ρ,列表示θ。这个数组的大小决定了最后结果的准确性。如果你希望角度精确到1 度,你就需要180 列。对于ρ,最大值为图片对角线的距离。所以如果精确度要到一个像素的级别,行数就应该与图像对角线的距离相等。

        想象一下我们有一个大小为100x100 的直线位于图像的中央。取直线上的第一个点,我们知道此处的(x,y)值。把x 和y 带入上面的方程组,然后遍历θ 的取值:0、1、2􈙽、3、. . .180。分别求出与其对应的ρ 的值,这样我们就得到一系列(ρ, θ)的数值对,如果这个数值对在累加器中也存在相应的位置对,就在这个位置上加1。所以现在累加器中的(50,90)=1。(一个点可能存在与多条直线中,所以对于直线上的每一个点可能是累加器中的多个值同时加1)。

        现在取直线上的第二个点。重复上面的过程。更新累加器中的值。现在累加器中(50,90)的值为2。你每次做的就是更新累加器中的值。对直线上的每个点都执行上面的操作,每次操作完成之后,累加器中的值就加1,但其他地方有时会加1, 有时不会。按照这种方式下去得到最后累加器中(50,90)的值肯定是最大的。如果你搜索累加器中的最大值,并找到其位置(50,90)就说明图像中有一条直线,这条直线到原点的距离为50,它的垂线与横轴的夹角为90 度。下面的动画很好的演示了这个过程。

这就是霍夫直线变换工作的方式。下图显示了一个累加器。其中最亮的两个点代表了图像中两条直线的参数 。

OpenCV中的霍夫变换 

        上面介绍的整个过程原理在OpenCV 中被封装成一个函数cv2.HoughLines()。函数是OpenCV中用于检测图像中直线的函数,它是基于霍夫变换的一种实现。

函数原型如下:

lines = cv2.HoughLines(image, rho, theta, threshold[, lines[, srn[, stn[, min_theta[, max_theta]]]]])

参数说明:

  • image:输入图像,通常为二值图像(边缘检测后的图像)。
  • rho:距离分辨率,表示以像素为单位的距离精度。
  • theta:角度分辨率,表示以弧度为单位的角度精度。
  • threshold:累加器阈值,表示直线被检测到所需的最小投票数,高于该值时才被认为是一条直线,也可以把它看成能检测到的直线的最短长度,以像素点为单位。
  • lines:可选参数,用于存储检测到的直线的输出数组。
  • srn:可选参数,表示距离rho的累加器的分割数。
  • stn:可选参数,表示角度theta的累加器的分割数。
  • min_theta:可选参数,表示直线角度的最小值。
  • max_theta:可选参数,表示直线角度的最大值。

函数返回值:

  • lines:检测到的直线的数组,每个直线由rho和theta表示

cv2.HoughLines()函数会在输入图像中应用霍夫变换来检测直线,然后返回检测到的直线的rho和theta值。这些直线可以通过在输入图像上进行绘制来可视化。

import cv2
import numpy as np# 加载图像
image = cv2.imread('image.jpg')
# 灰度转换
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 边缘检测
edges = cv2.Canny(gray, 50, 150, apertureSize=3)# 执行霍夫直线变换
lines = cv2.HoughLines(edges, 1, np.pi/180, 200)# 绘制检测到的直线
if lines is not None:for rho, theta in lines[0]:a = np.cos(theta)b = np.sin(theta)x0 = a * rhoy0 = b * rhox1 = int(x0 + 1000 * (-b))y1 = int(y0 + 1000 * (a))x2 = int(x0 - 1000 * (-b))y2 = int(y0 - 1000 * (a))cv2.line(image, (x1, y1), (x2, y2), (0, 255, 0), 2)# 显示结果
cv2.imshow('Hough Lines', image)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这个示例中,首先加载图像并将其转换为灰度图像。然后使用Canny边缘检测算法检测图像的边缘。接下来,使用cv2.HoughLines函数执行霍夫直线变换,并设置了一些参数,例如距离分辨率、角度分辨率和阈值。最后,根据检测到的直线参数绘制直线,并显示结果图像。

结果如下:

概率霍夫变换(Probabilistic Hough Transform) 

        从上面的检测过程我们可以发现:仅仅是一条直线都需要两个参数,这需要大量的计算。Probabilistic_Hough_Transform 是对霍夫变换的一种优化。它不会对每一个点都进行计算,而是从一幅图像中随机选取(是不是也可以使用图像金字塔呢,一个点集计算对于直线检测来说已经足够了。但是使用这种变换我们必须降低低阈值,因为总的点数变少了阈值值肯定也要小呀。下图是对两种方法的对比。

OpenCV 中使用的Matas, J. Galambos, C. 和Kittler, J.V. 提出的Progressive Probabilistic Hough Transform。这个函数是cv2.HoughLinesP()。函数原型如下:

lines = cv2.HoughLinesP(image, rho, theta, threshold[, lines[, minLineLength[, maxLineGap]]])

参数说明:

  • image:输入图像,通常为二值图像(边缘检测后的图像)。
  • rho:距离分辨率,表示以像素为单位的距离精度。
  • theta:角度分辨率,表示以弧度为单位的角度精度。
  • threshold:累加器阈值,表示直线被检测到所需的最小投票数。
  • lines:可选参数,用于存储检测到的直线的输出数组。
  • minLineLength:可选参数,表示直线的最小长度阈值,比这个短的都会忽略。
  • maxLineGap:可选参数,表示直线上的最大间隙,小于此值得看做是直线。

函数返回值:

  • lines:检测到的直线的数组,每个直线由起点和终点表示。

cv2.HoughLinesP()函数会在输入图像中应用霍夫变换来检测直线,然后返回检测到的直线的起点和终点坐标,这些直线可以通过在输入图像上进行绘制来可视化,而在前面的例子中,我们只得到了直线的参数,而且你必须找到所有的直线。而在这里一切变得很直接很简单。

import cv2
import numpy as npimg = cv2.imread('dave.jpg')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray,50,150,apertureSize = 3)minLineLength = 100
maxLineGap = 10lines = cv2.HoughLinesP(edges,1,np.pi/180,100,minLineLength,maxLineGap)for x1,y1,x2,y2 in lines[0]:cv2.line(img,(x1,y1),(x2,y2),(0,255,0),2)
cv2.imwrite('houghlines5.jpg',img)

结果如下:

这篇关于OpenCV-Python(25):Hough直线变换的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/573886

相关文章

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

Python中的getopt模块用法小结

《Python中的getopt模块用法小结》getopt.getopt()函数是Python中用于解析命令行参数的标准库函数,该函数可以从命令行中提取选项和参数,并对它们进行处理,本文详细介绍了Pyt... 目录getopt模块介绍getopt.getopt函数的介绍getopt模块的常用用法getopt模

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

Python如何精准判断某个进程是否在运行

《Python如何精准判断某个进程是否在运行》这篇文章主要为大家详细介绍了Python如何精准判断某个进程是否在运行,本文为大家整理了3种方法并进行了对比,有需要的小伙伴可以跟随小编一起学习一下... 目录一、为什么需要判断进程是否存在二、方法1:用psutil库(推荐)三、方法2:用os.system调用

使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)

《使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)》PPT是一种高效的信息展示工具,广泛应用于教育、商务和设计等多个领域,PPT文档中常常包含丰富的图片内容,这些图片不仅提升了... 目录一、引言二、环境与工具三、python 提取PPT背景图片3.1 提取幻灯片背景图片3.2 提取

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

一文带你搞懂Python中__init__.py到底是什么

《一文带你搞懂Python中__init__.py到底是什么》朋友们,今天我们来聊聊Python里一个低调却至关重要的文件——__init__.py,有些人可能听说过它是“包的标志”,也有人觉得它“没... 目录先搞懂 python 模块(module)Python 包(package)是啥?那么 __in

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB