ATC模型转换动态shape问题案例

2024-01-05 12:20

本文主要是介绍ATC模型转换动态shape问题案例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ATC(Ascend Tensor Compiler)是异构计算架构CANN体系下的模型转换工具:它可以将开源框架的网络模型(如TensorFlow等)以及Ascend IR定义的单算子描述文件转换为昇腾AI处理器支持的离线模型;模型转换过程中,ATC会进行算子调度优化、权重数据重排、内存使用优化等具体操作,对原始的深度学习模型进行进一步的调优,从而满足部署场景下的高性能需求,使其能够高效执行在昇腾AI处理器上。

本期就分享几个关于ATC模型转换动态shape相关问题的典型案例,并给出原因分析及解决方法:

  1. 原始网络模型shape中存在不固定的维度值,模型转换未设置shape信息
  2. 动态BatchSize/动态分辨率/动态维度场景,只设置一个档位,模型转换失败 
  3. 使用动态batchsize参数转模型时,其他档位设置了-1,模型转换失败
  4. 使用动态分辨率参数转模型时,其他档位设置了-1,模型转换失败

01 原始网络模型shape中存在不固定的维度值,模型转换时未设置shape信息

问题现象描述

获取原始网络模型,执行如下命令进行模型转换:

atc --model=./resnet_shape.pb --framework=3 --output=./out/resnet_shape --soc_version=Ascend310

报错信息如下:

ATC run failed, Please check the detail log, Try 'atc --help' for more information
E10001: Value [-1] for parameter [Inputs] is invalid. Reason: maybe you should set input_shape to specify its shapeSolution: Try again with a valid argument.

原因分析

原始模型的shape存在不固定的维度值“-1”,模型输入样例如下,模型转换时,并未给不固定的维度值赋值。

解决措施

  • 设置固定shape。

    模型转换时,给不确定的维度值设置固定取值,示例如下: 

atc --model=./resnet_shape.pb --framework=3 --output=./out/resnet_shape --soc_version=Ascend310 --input_shape="Inputs:1,224,224,3"
  • 设置shape分档。

       与动态BatchSize参数配合使用,使转换后的模型进行推理时,可以每次处理多种数量的图片,示例如下:

atc --model=./resnet_shape.pb --framework=3 --output=./out/resnet_shape --soc_version=Ascend310 --input_shape="Inputs:-1,224,224,3" --dynamic_batch_size="1,2,4,8"

    这样转换后的离线模型,可以支持每次处理1、2、4、8张图片,而不用再进行4次模型转换。

  • 设置shape范围。

      模型转换时,将对应维度的值设置成一个范围,示例如下:

atc --model=./resnet_shape.pb --framework=3 --output=./out/resnet_shape --soc_version=Ascend910 --input_shape="Inputs:1~10,224,224,3"

      这样转换后的离线模型,可以支持每次处理1~10张范围内的图片。

02 动态BatchSize/动态分辨率/动态维度场景,只设置一个档位,模型转换失败

问题现象描述

此类问题我们以--dynamic_batch_size参数为例进行说明。

使用ATC工具进行模型转换时,使用--dynamic_batch_size参数转换支持多个BatchSize的模型,转换命令样例如下:

atc --model=./resnet50_tensorflow_1.7.pb --input_shape="Placeholder:-1,224,224,3" --dynamic_batch_size="2" --soc_version=Ascend310 --output=./out/test --framework=3

报错信息如下:

ATC run failed, Please check the detail log, Try 'atc --help' for more information
E10035: [--dynamic_batch_size], [--dynamic_image_size], or [--dynamic_dims] has [1] profiles, which is less than the minimum ([2]).Solution: Ensure that the number of profiles configured in [--dynamic_batch_size], [--dynamic_image_size], or [--dynamic_dims] is at least the minimum.TraceBack (most recent call last):[GraphOpt][Prepare] Failed to run multi-dims-process for graph[test].[FUNC:OptimizeAfterGraphNormalization][FILE:fe_graph_optimizer.cc][LINE:639]Call OptimizeAfterGraphNormalization failed, engine_name:AIcoreEngine, graph_name:test[FUNC:OptimizeAfterGraphNormalization][FILE:graph_optimize.cc][LINE:224]        build graph failed, graph id:0, ret:1343225857[FUNC:BuildModelWithGraphId][FILE:ge_generator.cc][LINE:1656]

原因分析

使用ATC工具进行模型转换,如果使用了--dynamic_batch_size或--dynamic_image_size或--dynamic_dims动态shape参数时,请确保设置的档位数取值范围为(1,100],既必须设置至少2个档位,最多支持100档配置。

上述模型转换命令,只设置了一个档位,不符合参数设置要求。

解决措施

重新设置模型转换时的档位信息,至少设置2个档位,档位之间使用英文逗号分隔。改后样例如下:

atc --model=./resnet50_tensorflow_1.7.pb --input_shape="Placeholder:-1,224,224,3" --dynamic_batch_size="2,4" --soc_version=Ascend310 --output=./out/test --framework=3

03 使用动态batchsize参数转模型时,其他档位设置了-1,模型转换失败

问题现象描述

使用ATC工具进行模型转换时,使用--dynamic_batch_size参数转换支持多个BatchSize的模型,转换命令样例如下:

atc --model=./resnet50_tensorflow_1.7.pb --input_shape="Placeholder:-1,-1,-1,3" --dynamic_batch_size="2,4,8" --soc_version=Ascend310 --output=./out/test --framework=3

报错信息如下:

ATC run failed, Please check the detail log, Try 'atc --help' for more information
E10018: Value [-1] for shape [1] is invalid. When [--dynamic_batch_size] is included, only batch size N can be –1 in [--input_shape].Possible Cause: When [--dynamic_batch_size] is included, only batch size N can be –1 in the shape.Solution: Try again with a valid [--input_shape] argument. Make sure that non-batch size axes are not –1.TraceBack (most recent call last):[--dynamic_batch_size] is included, but none of the nodes specified in [--input_shape] have a batch size equaling –1.

原因分析

使用ATC工具进行模型转换,如果使用了--dynamic_batch_size参数,shape中只有N支持设置为"-1",且只支持N在shape首位的场景,既shape的第一位设置为"-1"。如果N在非首位场景下,请使用--dynamic_dims参数进行设置。

上述模型转换命令,shape中N、H、W都设置了"-1",不符合参数设置要求。

解决措施

重新设置模型转换时的参数信息,只设置shape中的N为"-1"。改后样例如下:

atc --model=./resnet50_tensorflow_1.7.pb --input_shape="Placeholder:-1,224,224,3" --dynamic_batch_size="2,4,8" --soc_version=Ascend310 --output=./out/test --framework=3

04 使用动态分辨率参数转模型时,其他档位设置了-1,模型转换失败

问题现象描述

使用ATC工具进行模型转换时,使用--dynamic_image_size参数转换支持多个分辨率的模型,转换命令样例如下:

atc --model=./resnet50_tensorflow_1.7.pb --input_shape="Placeholder:-1,-1,-1,3" --dynamic_image_size="448,448;224,224" --soc_version=Ascend310 --output=./out/test --framework=3

报错信息如下:

ATC run failed, Please check the detail log, Try 'atc --help' for more information
E10019: When [--dynamic_image_size] is included, only the height and width axes can be –1 in [--input_shape].Possible Cause: When [--dynamic_image_size] is included, only the height and width axes can be –1 in the shape.Solution: Try again with a valid [--input_shape] argument. Make sure that axes other than height and width are not –1.

原因分析

使用ATC工具进行模型转换,如果使用了--dynamic_image_size参数,shape中只有H、W支持设置为"-1",且只支持format为NCHW、NHWC格式;其他format场景,设置分辨率请使用--dynamic_dims参数。上述模型转换命令,shape中N、H、W都设置了"-1",不符合参数设置要求。

解决措施

重新设置模型转换时的参数信息,只设置shape中的H,W为"-1"。改后样例如下:

atc --model=./resnet50_tensorflow_1.7.pb --input_shape="Placeholder:1,-1,-1,3" --dynamic_image_size="448,448;224,224" --soc_version=Ascend310 --output=./out/test --framework=3

05 更多介绍

[1]昇腾文档中心:https://www.hiascend.com/zh/document

[2]昇腾社区在线课程:https://www.hiascend.com/zh/edu/courses

[3]昇腾论坛:https://www.hiascend.com/forum

这篇关于ATC模型转换动态shape问题案例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/572848

相关文章

resultMap如何处理复杂映射问题

《resultMap如何处理复杂映射问题》:本文主要介绍resultMap如何处理复杂映射问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录resultMap复杂映射问题Ⅰ 多对一查询:学生——老师Ⅱ 一对多查询:老师——学生总结resultMap复杂映射问题

java实现延迟/超时/定时问题

《java实现延迟/超时/定时问题》:本文主要介绍java实现延迟/超时/定时问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java实现延迟/超时/定时java 每间隔5秒执行一次,一共执行5次然后结束scheduleAtFixedRate 和 schedu

如何解决mmcv无法安装或安装之后报错问题

《如何解决mmcv无法安装或安装之后报错问题》:本文主要介绍如何解决mmcv无法安装或安装之后报错问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mmcv无法安装或安装之后报错问题1.当我们运行YOwww.chinasem.cnLO时遇到2.找到下图所示这里3.

浅谈配置MMCV环境,解决报错,版本不匹配问题

《浅谈配置MMCV环境,解决报错,版本不匹配问题》:本文主要介绍浅谈配置MMCV环境,解决报错,版本不匹配问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录配置MMCV环境,解决报错,版本不匹配错误示例正确示例总结配置MMCV环境,解决报错,版本不匹配在col

Python实现AVIF图片与其他图片格式间的批量转换

《Python实现AVIF图片与其他图片格式间的批量转换》这篇文章主要为大家详细介绍了如何使用Pillow库实现AVIF与其他格式的相互转换,即将AVIF转换为常见的格式,比如JPG或PNG,需要的小... 目录环境配置1.将单个 AVIF 图片转换为 JPG 和 PNG2.批量转换目录下所有 AVIF 图

Vue3使用router,params传参为空问题

《Vue3使用router,params传参为空问题》:本文主要介绍Vue3使用router,params传参为空问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录vue3使用China编程router,params传参为空1.使用query方式传参2.使用 Histo

详解如何通过Python批量转换图片为PDF

《详解如何通过Python批量转换图片为PDF》:本文主要介绍如何基于Python+Tkinter开发的图片批量转PDF工具,可以支持批量添加图片,拖拽等操作,感兴趣的小伙伴可以参考一下... 目录1. 概述2. 功能亮点2.1 主要功能2.2 界面设计3. 使用指南3.1 运行环境3.2 使用步骤4. 核

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable