技术学习|CDA level I 描述性统计分析(相关分析)

2024-01-05 00:12

本文主要是介绍技术学习|CDA level I 描述性统计分析(相关分析),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

常用于分析变量之间的关系的方法——相关分析。变量之间关系的分析师数据分析非常核心的工作,变量之间关系的研究包括关系存在性研究、关系程度大小研究、关系方向的研究、关系形式的研究、关系传递的研究等。其中关系形式的研究最为复杂,统计中有大量的分析方法都是来探索变量之间关系形式的。研究变量关系形式的前提是变量间存在一定程度的相关关系。

一、相关分析的含义

变量之间的关系按照强弱来划分,常可以分为函数关系、相关关系、没有关系。函数关系是指变量之间存在关系、且关系是确定的,即给出一个X,有且只有一个Y与其相对应,则称Y是X的函数。相关关系是指变量间有关系,但关系不确定。没有关系也称独立,指两个变量之间不存在一个变量影响另一个变量的情形,其常用于刻画没有关联的事物之间的关系。在数据分析的实际工作中,相关关系是最常见的,也是数据分析的重点。

从极限的角度看,函数关系可以看作是相关关系的极限,是强相关关系的极限;没有关系也可以看作是相关关系的极限,是弱相关关系的极限。

变量之间的关系按照形式来划分,可以分为线性关系和非线性关系。线性关系是指变量之间的变化按照直线波动,非线性关系则按照非线性波动,非线性的具体形式非常复杂,如二次函数形式、对数形式、指数形式、正弦函数形式等。在实际数据分析中,常重点研究存在线性关系的变量,主要是因为线性关系相比较于非线性关系相对直观一些,易于理解。

变量之间的关系按照变量数量来划分,可以分为简单关系和多重关系。简单关系是指两个变量的关系,即一对一关系;多重关系是指多个变量之间的关系,具体可以分为一对多关系、多对多关系。在实际数据分析中,简单关系和多重关系都是研究的重点。

广义的相对分析是对两个或多个变量之间所有可能相关关系的分析(包括简单线性的、简单非线性的、多重线性的、多重非线性的)。而这里的相关分析是指狭义相关分析,是指用来研究变量之间简单线性相关关系的方法,即研究两个变量的关系,这两个变量之间存在不确定性的关系,这种关系常用直线表示,故这种相关分析也常称简单线性相关分析。

二、简单线性相关关系的描述

对相关关系的描述主要用来解决有没有相关关系的问题,在实际数据分析中,常用散点图来描述变量的相关关系。两个变量的散点图取一个变量作横轴(常用自变量),另一个变量作纵轴(常用因变量),将样本的各个体在图上描点,得到的图就是散点图。

对于两个变量的线性相关关系,常呈现两种情形:一种是随着自变量的增大,因变量有增大的趋势,两者同向变化,我们称之为正相关;另一种是随着自变量的增大,因变量有减少的趋势,两者反向变化,我们称之为负相关。由散点图可以很直观形象地看出变量之间的关系情况,但关系程度到底是多少,则需要进一步对相关关系进行度量。

三、简单线性相关关系的度量

1、Pearson相关系数

设两个变量分别为x,y,Pearson相关系数的定义公式如下,
ρ = C o v ( x , y ) V a r ( x ) V a r ( y ) \rho=\frac{Cov(x,y)}{\sqrt{Var(x)Var(y)}} ρ=Var(x)Var(y) Cov(x,y)
式中,Cov(x,y)是x,y的协方差;Var(x)是x的方差;Var(y)是y的方差;ρ可以看作根据总体数据计算的相关系数,即总体的简单线性相关系数。

样本的简单线性相关系数常用符号r表示,根据定义公式有:
r = C o v ( x , y ) V a r ( x ) V a r ( y ) = ∑ ( x i − x ˉ ) ( y i − y ˉ ) ∑ ( x i − x ˉ ) 2 ∑ ( y i − y ˉ ) 2 = ∑ x i y i − n x ˉ y ˉ ( ∑ x i 2 − n x ˉ 2 ) ( ∑ y i 2 − n y ˉ 2 ) r=\frac{Cov(x,y)}{\sqrt{Var(x)Var(y)}}=\frac{\sum(x_i-\bar x)(y_i-\bar y)}{\sqrt{\sum(x_i-\bar x)^2\sum(y_i-\bar y)^2}}=\frac{\sum x_iy_i-n\bar x \bar y}{\sqrt{(\sum x_i^2-n\bar x^2)(\sum y_i^2-n \bar y^2)}} r=Var(x)Var(y) Cov(x,y)=(xixˉ)2(yiyˉ)2 (xixˉ)(yiyˉ)=(xi2nxˉ2)(yi2nyˉ2) xiyinxˉyˉ
式中, x ˉ \bar x xˉ为x的样本算术平均数; y ˉ \bar y yˉ为y的样本算数平均数。

相关系数r的特点如下:

  • 相关系数r的取值范围是[-1,1],其中 − 1 ≤ r < 0 -1\leq r<0 1r<0表示负相关, 0 ≤ r < 1 0\leq r<1 0r<1表示正相关。
  • |r|=1表示x与y完全相关,其中r=-1表示x与y完全负相关,r=1表示x与y完全正相关。
  • |r|越趋于1表示相关关系越密切,|r|越趋于0表示相关关系越不密切。
  • r=0表示x与y之间不存在线性相关关系。

相关关系只能衡量两个变量之间的线性相关关系,当其为0时,只能说明这两个变量之间没有线性相关,不能说它们之间没有关系。对于完全相关,只能看作是关系很强,但不能看作是函数关系,因为完全相关只是样本数据计算出相关系数为1或-1,可能换另一组样本,计算结果就会不一样,即使根据历史数据每次计算的结果都是1或-1,但将来也可能有不一样的计算结果。函数关系是先有关系再有样本数据,完全相关是先有样本数据再有关系。此外,函数关系除有线性函数关系外,还有非线性函数关系,这里的完全相关只是完全的线性相关,并未测量非线性相关情形。

一般来说,|r| ≥ \geq 0.8时,可认为变量之间存在强的线性相关关系; 0.5 ≤ ∣ r ∣ < 0.8 0.5\leq|r|<0.8 0.5r<0.8,可认为相关关系一般; ∣ r ∣ < 0.5 |r|<0.5 r<0.5时,可认为相关关系较弱。但这些判断标准在很多时候并不准确,特别是在大数据情况下,这需要根据样本量来确定相关关系的程度。一般来说,当样本量越大时,相关关系的判断值就会越小(小的相关系数也表示了强的相关关系)。这需要用到相关系数的显著性检验和假设检验的内容。

2、Spearman等级相关系数

Pearson相关系数要求两个变量数据均为数值数据。

非数值数据包括分类数据和顺序数据。

如果变量数据是分类数据,也是可以计算相关系数来衡量变量之间的相关关系的,需要用到列联分析方法,根据列联分析的统计量来计算。

如果变量数据是顺序数据,有两个思路可以构造相关函数来衡量变量之间的相关关系

  • 用分类数据的列联分析方法,构造列联分析的统计量
  • Spearman等级相关系数。设两个变量分别为x,y,Spearman等级相关系数 r d r_d rd的计算公式如下

r d = 1 − 6 ∑ d 2 n ( n 2 − 1 ) r_d=1-\frac{6\sum d^2}{n(n^2-1)} rd=1n(n21)6d2

式中,d是被观测的两个变量的等级的差值(若有多个个体等级相同,则取其等级的平均数作为各个体的等级,如并列第二,则取2.5);n是样本容量。Spearman等级相关系数 r d r_d rd的取值范围也是[-1,1],具有和Pearson相关系数相同的特点。

3、使用相关系数时需要注意的问题

  • 相关系数是对称地度量两个变量的相关关系,即x对y的相关系数与y对x的相关系数是相等的,x与y互换位置并不影响相关系数大小。
  • 相关系数只能反映变量之间的线性相关程度,既不能确定变量之间具体的的因果关系,也不能说明这种线性相关关系具体接近哪条直线。对于变量间的因果关系方向,这涉及变量关系方向的研究;对于变量关系具体接近哪条线,这涉及变量关系形式的研究。

这篇关于技术学习|CDA level I 描述性统计分析(相关分析)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/571034

相关文章

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

关于Maven生命周期相关命令演示

《关于Maven生命周期相关命令演示》Maven的生命周期分为Clean、Default和Site三个主要阶段,每个阶段包含多个关键步骤,如清理、编译、测试、打包等,通过执行相应的Maven命令,可以... 目录1. Maven 生命周期概述1.1 Clean Lifecycle1.2 Default Li

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

Redis的Hash类型及相关命令小结

《Redis的Hash类型及相关命令小结》edisHash是一种数据结构,用于存储字段和值的映射关系,本文就来介绍一下Redis的Hash类型及相关命令小结,具有一定的参考价值,感兴趣的可以了解一下... 目录HSETHGETHEXISTSHDELHKEYSHVALSHGETALLHMGETHLENHSET

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

Spring中Bean有关NullPointerException异常的原因分析

《Spring中Bean有关NullPointerException异常的原因分析》在Spring中使用@Autowired注解注入的bean不能在静态上下文中访问,否则会导致NullPointerE... 目录Spring中Bean有关NullPointerException异常的原因问题描述解决方案总结