心电图数据挖掘模型融合

2024-01-04 07:32

本文主要是介绍心电图数据挖掘模型融合,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

模型融合

在模型融合以后,评分达到了360.
在这里插入图片描述

1.导入相关所需库

import pandas as pd
import numpy as np
import warnings
import matplotlib
import matplotlib.pyplot as plt
import seaborn as snswarnings.filterwarnings('ignore')
%matplotlib inlineimport itertools
import matplotlib.gridspec as gridspec
from sklearn import datasets
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB 
from sklearn.ensemble import RandomForestClassifier,RandomForestRegressor
# from mlxtend.classifier import StackingClassifier
from sklearn.model_selection import cross_val_score, train_test_split
# from mlxtend.plotting import plot_learning_curves
# from mlxtend.plotting import plot_decision_regionsfrom sklearn.model_selection import StratifiedKFold
from sklearn.model_selection import train_test_split
from sklearn.model_selection import StratifiedKFold
from sklearn.model_selection import train_test_split
import lightgbm as lgb
from sklearn.neural_network import MLPClassifier,MLPRegressor
from sklearn.metrics import mean_squared_error, mean_absolute_error

2.引入一个降内存的函数,降低数据使用内存

def reduce_mem_usage(df):start_mem = df.memory_usage().sum() / 1024**2 print('Memory usage of dataframe is {:.2f} MB'.format(start_mem))for col in df.columns:col_type = df[col].dtypeif col_type != object:c_min = df[col].min()c_max = df[col].max()if str(col_type)[:3] == 'int':if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:df[col] = df[col].astype(np.int8)elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:df[col] = df[col].astype(np.int16)elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:df[col] = df[col].astype(np.int32)elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:df[col] = df[col].astype(np.int64)  else:if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max:df[col] = df[col].astype(np.float16)elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max:df[col] = df[col].astype(np.float32)else:df[col] = df[col].astype(np.float64)else:df[col] = df[col].astype('category')end_mem = df.memory_usage().sum() / 1024**2 print('Memory usage after optimization is: {:.2f} MB'.format(end_mem))print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem))return df

3.导入数据,并进行数据的预处理

train = pd.read_csv('./data/train.csv')
test = pd.read_csv('./data/testA.csv')#简单预处理
train_list = []
for items in train.values:train_list.append([items[0]] + [float(i) for i in items[1].split(',')] + [items[2]])test_list = []
for items in test.values:test_list.append([items[0]] + [float(i) for i in items[1].split(',')])train = pd.DataFrame(np.array(train_list))
test = pd.DataFrame(np.array(test_list))# id列不算入特征
features = ['s_'+str(i) for i in range(len(train_list[0])-2)] 
train.columns = ['id'] + features + ['label']
test.columns = ['id'] + featurestrain = reduce_mem_usage(train)
test = reduce_mem_usage(test)

在这里插入图片描述

4.划分训练集和测试集

# 根据8:2划分训练集和校验集
X_train = train.drop(['id','label'], axis=1)
y_train = train['label']# 测试集
X_test = test.drop(['id'], axis=1)# 第一次运行可以先用一个subdata,这样速度会快些
X_train = X_train.iloc[:50000,:20]
y_train = y_train.iloc[:50000]
X_test = X_test.iloc[:,:20]# 划分训练集和测试集
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.2)

5.定义Random Forest,LGB,NN这三个单模函数

# 单模函数
def build_model_rf(X_train,y_train):model = RandomForestRegressor(n_estimators = 100)model.fit(X_train, y_train)return modeldef build_model_lgb(X_train,y_train):model = lgb.LGBMRegressor(num_leaves=63,learning_rate = 0.1,n_estimators = 100)model.fit(X_train, y_train)return modeldef build_model_nn(X_train,y_train):model = MLPRegressor(alpha=1e-05, hidden_layer_sizes=(5, 2), random_state=1,solver='lbfgs')model.fit(X_train, y_train)return model

6.对Random Forest,LGB,NN单模型进行训练

# 这里针对三个单模进行训练,其中subA_rf/lgb/nn都是可以提交的模型
# 单模没有进行调参,因此是弱分类器,效果可能不是很好。print('predict rf...')
model_rf = build_model_rf(X_train,y_train)
val_rf = model_rf.predict(X_val)
subA_rf = model_rf.predict(X_test)print('predict lgb...')
model_lgb = build_model_lgb(X_train,y_train)
val_lgb = model_lgb.predict(X_val)
subA_lgb = model_rf.predict(X_test)print('predict NN...')
model_nn = build_model_nn(X_train,y_train)
val_nn = model_nn.predict(X_val)
subA_nn = model_rf.predict(X_test)

在这里插入图片描述

7.加权融合

如果没有给权重矩阵,就是均值融合模型
权重矩阵可以进行自定义,这里我们是用三个单模进行融合。如果有更多需要更改矩阵size

# 加权融合模型,如果w没有变,就是均值融合
def Weighted_method(test_pre1,test_pre2,test_pre3,w=[1/3,1/3,1/3]):Weighted_result = w[0]*pd.Series(test_pre1)+w[1]*pd.Series(test_pre2)+w[2]*pd.Series(test_pre3)return Weighted_result# 初始权重,可以进行自定义,这里我们随便设置一个权重
w = [0.2, 0.3, 0.5]val_pre = Weighted_method(val_rf,val_lgb,val_nn,w)
MAE_Weighted = mean_absolute_error(y_val,val_pre)
print('MAE of Weighted of val:',MAE_Weighted)

在这里插入图片描述
val加权平均为0.25368…

8.将多个单模预测结果融合成融和模型结果

## 预测数据部分
subA = Weighted_method(subA_rf,subA_lgb,subA_nn,w)

在这里插入图片描述

9.Stacking融合

## Stacking## 第一层
train_rf_pred = model_rf.predict(X_train)
train_lgb_pred = model_lgb.predict(X_train)
train_nn_pred = model_nn.predict(X_train)stacking_X_train = pd.DataFrame()
stacking_X_train['Method_1'] = train_rf_pred
stacking_X_train['Method_2'] = train_lgb_pred
stacking_X_train['Method_3'] = train_nn_predstacking_X_val = pd.DataFrame()
stacking_X_val['Method_1'] = val_rf
stacking_X_val['Method_2'] = val_lgb
stacking_X_val['Method_3'] = val_nnstacking_X_test = pd.DataFrame()
stacking_X_test['Method_1'] = subA_rf
stacking_X_test['Method_2'] = subA_lgb
stacking_X_test['Method_3'] = subA_nn
stacking_X_test

在这里插入图片描述

# 第二层是用random forest
model_lr_stacking = build_model_rf(stacking_X_train,y_train)## 训练集
train_pre_Stacking = model_lr_stacking.predict(stacking_X_train)
print('MAE of stacking:',mean_absolute_error(y_train,train_pre_Stacking))## 验证集
val_pre_Stacking = model_lr_stacking.predict(stacking_X_val)
print('MAE of stacking:',mean_absolute_error(y_val,val_pre_Stacking))## 预测集
print('Predict stacking...')
subA_Stacking = model_lr_stacking.predict(stacking_X_test)

在这里插入图片描述

预测集要在天池平台上才能看到结果。

总结

  1. 结果层面的融合,这种是最常见的融合方法,其可行的融合方法也有很多,比如根据结果的得分进行加权融合,还可以做Log,exp处理等。在做结果融合的时候。有一个很重要的条件是模型结果的得分要比较近似但结果的差异要比较大,这样的结果融合往往有比较好的效果提升。如果不满足这个条件带来的效果很低,甚至是负效果。

  2. 特征层面的融合,这个层面叫融合融合并不准确,主要是队伍合并后大家可以相互学习特征工程。如果我们用同种模型训练,可以把特征进行切分给不同的模型,然后在后面进行模型或者结果融合有时也能产生比较好的效果。

  3. 模型层面的融合,模型层面的融合可能就涉及模型的堆叠和设计,比如加stacking,部分模型的结果作为特征输入等,这些就需要多实验和思考了,基于模型层面的融合最好不同模型类型要有一定的差异,用同种模型不同的参数的收益一般是比较小的。

这篇关于心电图数据挖掘模型融合的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/568590

相关文章

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

AI Toolkit + H100 GPU,一小时内微调最新热门文生图模型 FLUX

上个月,FLUX 席卷了互联网,这并非没有原因。他们声称优于 DALLE 3、Ideogram 和 Stable Diffusion 3 等模型,而这一点已被证明是有依据的。随着越来越多的流行图像生成工具(如 Stable Diffusion Web UI Forge 和 ComyUI)开始支持这些模型,FLUX 在 Stable Diffusion 领域的扩展将会持续下去。 自 FLU