二叉排序树(BST)/二叉查找树的建立(BST是笔试面试的常客)

2024-01-04 05:32

本文主要是介绍二叉排序树(BST)/二叉查找树的建立(BST是笔试面试的常客),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

分享一下我老师大神的人工智能教程!零基础,通俗易懂!http://blog.csdn.net/jiangjunshow

也欢迎大家转载本篇文章。分享知识,造福人民,实现我们中华民族伟大复兴!

         二叉排序树又叫二叉查找树,英文名称是:Binary Sort Tree.  BST的定义就不详细说了,我用一句话概括:左 < 中 < 右。 根据这个原理,我们可以推断:BST的中序遍历必定是严格递增的。

         在建立一个BST之前,大家可以做一下这个题目(很简单的):

        已知,某树的先序遍历为:4, 2, 1 ,0, 3, 5, 9, 7, 6, 8. 中序遍历为: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. 请画出该树。


        我们知道,树的基本遍历有4种方式,分别是:

        先序遍历;中序遍历;后续遍历;层次遍历。事实上,知道任意两种方式,并不能唯一地确定树的结构,但是,只要知道中序遍历和另外任意一种遍历方式,就一定可以唯一地确定一棵树,于是,上面那个题目的答案如下:



      下面,我们来看看BST的建立过程,程序如下(没考虑内存泄露):

#include <iostream>using namespace std;// BST的结点typedef struct node{ int key; struct node *lChild, *rChild;}Node, *BST;// 在给定的BST中插入结点,其数据域为element, 使之称为新的BSTbool BSTInsert(Node * &p, int element)if(NULL == p) // 空树 {  p = new Node;  p->key = element;  p->lChild = p->rChild = NULL;  return true; } if(element == p->key) // BST中不能有相等的值  return falseif(element < p->key)  // 递归  return BSTInsert(p->lChild, element); return BSTInsert(p->rChild, element); // 递归}// 建立BSTvoid createBST(Node * &T, int a[], int n){ T = NULL;  int i; for(i = 0; i < n; i++) {  BSTInsert(T, a[i]); }}// 先序遍历void preOrderTraverse(BST T)if(T) {  cout << T->key << " ";  preOrderTraverse(T->lChild);  preOrderTraverse(T->rChild); }}// 中序遍历void inOrderTraverse(BST T)if(T) {  inOrderTraverse(T->lChild);  cout << T->key << " ";  inOrderTraverse(T->rChild); }}int main()int a[10] = {4, 5, 2, 1, 0, 9, 3, 7, 6, 8}; int n = 10; BST T; // 并非所有的a[]都能构造出BST,所以,最好对createBST的返回值进行判断 createBST(T, a, n); preOrderTraverse(T); cout << endl; inOrderTraverse(T); cout << endlreturn 0;}

     那么,怎么知道我们这个程序对不对呢?我们输出其先序和中序遍历,这样就可以完全确定这棵树,运行程序,发现先序遍历为:4, 2, 1 ,0, 3, 5, 9, 7, 6, 8. 中序遍历为: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. 好了,这棵树确定了,如上图(已画),那棵树真的是一棵BST, 真的。在后续的博文中,我们会给出二叉排序树的判定方法,期待ing.


           

给我老师的人工智能教程打call!http://blog.csdn.net/jiangjunshow
这里写图片描述

这篇关于二叉排序树(BST)/二叉查找树的建立(BST是笔试面试的常客)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/568298

相关文章

Mybatis 传参与排序模糊查询功能实现

《Mybatis传参与排序模糊查询功能实现》:本文主要介绍Mybatis传参与排序模糊查询功能实现,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、#{ }和${ }传参的区别二、排序三、like查询四、数据库连接池五、mysql 开发企业规范一、#{ }和${ }传参的

C++快速排序超详细讲解

《C++快速排序超详细讲解》快速排序是一种高效的排序算法,通过分治法将数组划分为两部分,递归排序,直到整个数组有序,通过代码解析和示例,详细解释了快速排序的工作原理和实现过程,需要的朋友可以参考下... 目录一、快速排序原理二、快速排序标准代码三、代码解析四、使用while循环的快速排序1.代码代码1.由快

Windows系统下如何查找JDK的安装路径

《Windows系统下如何查找JDK的安装路径》:本文主要介绍Windows系统下如何查找JDK的安装路径,文中介绍了三种方法,分别是通过命令行检查、使用verbose选项查找jre目录、以及查看... 目录一、确认是否安装了JDK二、查找路径三、另外一种方式如果很久之前安装了JDK,或者在别人的电脑上,想

Spring排序机制之接口与注解的使用方法

《Spring排序机制之接口与注解的使用方法》本文介绍了Spring中多种排序机制,包括Ordered接口、PriorityOrdered接口、@Order注解和@Priority注解,提供了详细示例... 目录一、Spring 排序的需求场景二、Spring 中的排序机制1、Ordered 接口2、Pri

大数据小内存排序问题如何巧妙解决

《大数据小内存排序问题如何巧妙解决》文章介绍了大数据小内存排序的三种方法:数据库排序、分治法和位图法,数据库排序简单但速度慢,对设备要求高;分治法高效但实现复杂;位图法可读性差,但存储空间受限... 目录三种方法:方法概要数据库排序(http://www.chinasem.cn对数据库设备要求较高)分治法(常

Python中lambda排序的六种方法

《Python中lambda排序的六种方法》本文主要介绍了Python中使用lambda函数进行排序的六种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录1.对单个变量进行排序2. 对多个变量进行排序3. 降序排列4. 单独降序1.对单个变量进行排序

关于Java内存访问重排序的研究

《关于Java内存访问重排序的研究》文章主要介绍了重排序现象及其在多线程编程中的影响,包括内存可见性问题和Java内存模型中对重排序的规则... 目录什么是重排序重排序图解重排序实验as-if-serial语义内存访问重排序与内存可见性内存访问重排序与Java内存模型重排序示意表内存屏障内存屏障示意表Int

字节面试 | 如何测试RocketMQ、RocketMQ?

字节面试:RocketMQ是怎么测试的呢? 答: 首先保证消息的消费正确、设计逆向用例,在验证消息内容为空等情况时的消费正确性; 推送大批量MQ,通过Admin控制台查看MQ消费的情况,是否出现消费假死、TPS是否正常等等问题。(上述都是临场发挥,但是RocketMQ真正的测试点,还真的需要探讨) 01 先了解RocketMQ 作为测试也是要简单了解RocketMQ。简单来说,就是一个分

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

usaco 1.3 Mixing Milk (结构体排序 qsort) and hdu 2020(sort)

到了这题学会了结构体排序 于是回去修改了 1.2 milking cows 的算法~ 结构体排序核心: 1.结构体定义 struct Milk{int price;int milks;}milk[5000]; 2.自定义的比较函数,若返回值为正,qsort 函数判定a>b ;为负,a<b;为0,a==b; int milkcmp(const void *va,c