基于深度学习的交通标志图像分类识别系统

2024-01-04 00:20

本文主要是介绍基于深度学习的交通标志图像分类识别系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

温馨提示:文末有 CSDN 平台官方提供的学长 QQ 名片 :) 

1. 项目简介

        本文详细探讨了一基于深度学习的交通标志图像识别系统。采用TensorFlow和Keras框架,利用卷积神经网络(CNN)进行模型训练和预测,并引入VGG16迁移学习模型,取得96%的高准确率。通过搭建Web系统,用户能上传交通标志图片,系统实现了自动实时的交通标志分类识别。该系统不仅展示了深度学习在交通领域的实际应用,同时为用户提供了一种高效、准确的交通标志识别服务。

2. 交通标志数据集读取

        数据集里面的图像具有不同大小,光照条件,遮挡情况下的43种不同交通标志符号,图像的成像情况与你实际在真实环境中不同时间路边开车走路时看到的交通标志的情形非常相似。训练集包括大约39,000个图像,而测试集大约有12,000个图像。图像不能保证是固定 的尺寸,标志不一定在每个图像中都是居中。每个图像包含实际交通标志周围10%左右的边界。

folders = os.listdir(train_path)train_number = []
class_num = []for folder in folders:train_files = os.listdir(train_path + '/' + folder)train_number.append(len(train_files))class_num.append(classes[int(folder)])# 不同类别交通标志数量,并进行排序
zipped_lists = zip(train_number, class_num)
sorted_pairs = sorted(zipped_lists)
tuples = zip(*sorted_pairs)
train_number, class_num = [ list(t) for t in  tuples]# 绘制不同类别交通标志数量分布柱状图
plt.figure(figsize=(21,10))  
plt.bar(class_num, train_number)
plt.xticks(class_num, rotation='vertical', fontsize=16)
plt.title('不同类别交通标志数量分布柱状图', fontsize=20)
plt.show()

         划分训练集、验证集:

X_train, X_val, y_train, y_val = train_test_split(image_data, image_labels, test_size=0.3, random_state=42, shuffle=True)X_train = X_train/255 
X_val = X_val/255print("X_train.shape", X_train.shape)
print("X_valid.shape", X_val.shape)
print("y_train.shape", y_train.shape)
print("y_valid.shape", y_val.shape)

        类别标签进行 One-hot 编码:

y_train = keras.utils.to_categorical(y_train, NUM_CATEGORIES)
y_val = keras.utils.to_categorical(y_val, NUM_CATEGORIES)print(y_train.shape)
print(y_val.shape)

3. 卷积神经网络模型构建

model = keras.models.Sequential([    keras.layers.Conv2D(filters=16, kernel_size=(3,3), activation='relu', input_shape=(IMG_HEIGHT,IMG_WIDTH,channels)),keras.layers.Conv2D(filters=32, kernel_size=(3,3), activation='relu'),# ......keras.layers.Conv2D(filters=64, kernel_size=(3,3), activation='relu'),# ......keras.layers.Flatten(),keras.layers.Dense(512, activation='relu'),keras.layers.BatchNormalization(),keras.layers.Dropout(rate=0.5),keras.layers.Dense(43, activation='softmax')
])

4. 模型训练与性能评估

        设置模型训练参数:

epochs = 20initial_learning_rate = 5e-5lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate, #设置初始学习率decay_steps=64,      #每隔多少个step衰减一次decay_rate=0.98,     #衰减系数staircase=True)# 将指数衰减学习率送入优化器
optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy'])history = model.fit(X_train, y_train, batch_size=32, epochs=epochs, validation_data=(X_val, y_val))

        加载测试集进行模型评估: 

# 计算测试集准确率
pred = model.predict(X_test)
pred_labels = np.argmax(pred, 1)print('测试集准确率: ',accuracy_score(labels, pred_labels)*100)
测试集准确率:  93.24623911322249

5. 基于迁移学习的交通标志识别

from tensorflow.keras.applications import VGG16height = 32
width = 32vgg_base_model = VGG16(weights='imagenet', include_top=False, input_shape=(height,width,3))
vgg_base_model.trainable=Truevgg_model = tf.keras.Sequential([vgg_base_model,keras.layers.BatchNormalization(),keras.layers.Flatten(),keras.layers.Dense(512, activation='relu'),keras.layers.BatchNormalization(),keras.layers.Dropout(rate=0.5),keras.layers.Dense(43, activation='softmax')])vgg_model.summary()

Epoch 1/20
858/858 [==============================] - ETA: 0s - loss: 0.9774 - accuracy: 0.7366
Epoch 1: val_accuracy improved from -inf to 0.94806, saving model to best_model.h5
858/858 [==============================] - 334s 387ms/step - loss: 0.9774 - accuracy: 0.7366 - val_loss: 0.1651 - val_accuracy: 0.9481
Epoch 2/20
858/858 [==============================] - ETA: 0s - loss: 0.0737 - accuracy: 0.9804
Epoch 2: val_accuracy improved from 0.94806 to 0.97866, saving model to best_model.h5
858/858 [==============================] - 350s 408ms/step - loss: 0.0737 - accuracy: 0.9804 - val_loss: 0.0750 - val_accuracy: 0.9787
Epoch 3/20
858/858 [==============================] - ETA: 0s - loss: 0.0274 - accuracy: 0.9926
Epoch 3: val_accuracy improved from 0.97866 to 0.98266, saving model to best_model.h5
858/858 [==============================] - 351s 409ms/step - loss: 0.0274 - accuracy: 0.9926 - val_loss: 0.0681 - val_accuracy: 0.9827
Epoch 4/20
858/858 [==============================] - ETA: 0s - loss: 0.0197 - accuracy: 0.9946
Epoch 4: val_accuracy improved from 0.98266 to 0.99779, saving model to best_model.h5
858/858 [==============================] - 339s 395ms/step - loss: 0.0197 - accuracy: 0.9946 - val_loss: 0.0085 - val_accuracy: 0.9978
Epoch 5/20
858/858 [==============================] - ETA: 0s - loss: 0.0081 - accuracy: 0.9982
Epoch 5: val_accuracy improved from 0.99779 to 0.99830, saving model to best_model.h5
858/858 [==============================] - 364s 424ms/step - loss: 0.0081 - accuracy: 0.9982 - val_loss: 0.0067 - val_accuracy: 0.9983
Epoch 6/20
858/858 [==============================] - ETA: 0s - loss: 0.0025 - accuracy: 0.9995
Epoch 6: val_accuracy improved from 0.99830 to 0.99855, saving model to best_model.h5
858/858 [==============================] - 354s 413ms/step - loss: 0.0025 - accuracy: 0.9995 - val_loss: 0.0053 - val_accuracy: 0.9986
Epoch 7/20
858/858 [==============================] - ETA: 0s - loss: 0.0030 - accuracy: 0.9992
Epoch 7: val_accuracy did not improve from 0.99855
858/858 [==============================] - 333s 389ms/step - loss: 0.0030 - accuracy: 0.9992 - val_loss: 0.0126 - val_accuracy: 0.9969
Epoch 7: early stopping 

         模型评估:

# 计算测试集准确率
pred = vgg_model.predict(X_test)
pred_labels = np.argmax(pred, 1)print('测试集准确率: ',accuracy_score(labels, pred_labels)*100)

         测试集准确率: 96.02533650039588

6. 测试集预测结果可视化

plt.figure(figsize = (25, 25))start_index = 0
for i in range(25):plt.subplot(5, 5, i + 1)plt.grid(False)plt.xticks([])plt.yticks([])prediction = pred_labels[start_index + i]actual = labels[start_index + i]col = 'g'if prediction != actual:col = 'r'plt.xlabel('实际类别:{}\n预测类别:{}'.format(classes[actual], classes[prediction]), color = col, fontsize=18)plt.imshow(X_test[start_index + i])
plt.show()

7. 交通标志分类识别系统

7.1 首页

7.2 交通标志在线识别

8. 结论

        本文详细探讨了一基于深度学习的交通标志图像识别系统。采用TensorFlow和Keras框架,利用卷积神经网络(CNN)进行模型训练和预测,并引入VGG16迁移学习模型,取得96%的高准确率。通过搭建Web系统,用户能上传交通标志图片,系统实现了自动实时的交通标志分类识别。该系统不仅展示了深度学习在交通领域的实际应用,同时为用户提供了一种高效、准确的交通标志识别服务。

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。技术交流、源码获取认准下方 CSDN 官方提供的学长 QQ 名片 :)

精彩专栏推荐订阅:

1. Python数据挖掘精品实战案例

2. 计算机视觉 CV 精品实战案例

3. 自然语言处理 NLP 精品实战案例

这篇关于基于深度学习的交通标志图像分类识别系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/567558

相关文章

OpenCV图像形态学的实现

《OpenCV图像形态学的实现》本文主要介绍了OpenCV图像形态学的实现,包括腐蚀、膨胀、开运算、闭运算、梯度运算、顶帽运算和黑帽运算,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起... 目录一、图像形态学简介二、腐蚀(Erosion)1. 原理2. OpenCV 实现三、膨胀China编程(

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

使用Python开发一个图像标注与OCR识别工具

《使用Python开发一个图像标注与OCR识别工具》:本文主要介绍一个使用Python开发的工具,允许用户在图像上进行矩形标注,使用OCR对标注区域进行文本识别,并将结果保存为Excel文件,感兴... 目录项目简介1. 图像加载与显示2. 矩形标注3. OCR识别4. 标注的保存与加载5. 裁剪与重置图像

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操