python旅游大数据分析可视化大屏 游客分析+商家分析+舆情分析 计算机毕业设计(附源码)Flask框架✅

本文主要是介绍python旅游大数据分析可视化大屏 游客分析+商家分析+舆情分析 计算机毕业设计(附源码)Flask框架✅,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

毕业设计:2023-2024年计算机专业毕业设计选题汇总(建议收藏)

毕业设计:2023-2024年最新最全计算机专业毕设选题推荐汇总

🍅感兴趣的可以先收藏起来,点赞、关注不迷路,大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助同学们顺利毕业 。🍅

1、项目介绍

技术栈:
Python语言 Flask框架 Echarts可视化 旅游数据 HTML

旅游大数据分析可视化大屏(游客+商家+舆情)

旅游大数据分析可视化系统是一个基于Python Flask框架开发的系统,用于分析和可视化旅游领域的大数据。该系统主要包括游客分析、商家分析和舆情分析三个模块。

2、项目界面

(1)旅游大数据大屏

在这里插入图片描述

(3)旅游板块分析大屏----游客分析

在这里插入图片描述

(2)旅游板块分析大屏----商家分析

在这里插入图片描述

(4)旅游板块分析大屏----旅游舆情分析

在这里插入图片描述

(5)功能模块选择

在这里插入图片描述

3、项目说明

旅游大数据分析可视化系统是一个基于Python Flask框架开发的系统,用于分析和可视化旅游领域的大数据。该系统主要包括游客分析、商家分析和舆情分析三个模块。

  1. 游客分析模块:该模块主要对游客的行为进行分析,包括游客的年龄、性别、地域分布等信息。通过对游客数据的分析,可以帮助旅游机构了解自己的客户群体,并根据分析结果制定相应的营销策略。

  2. 商家分析模块:该模块主要对旅游商家的经营情况进行分析,包括商家的销售额、客流量等指标。通过对商家数据的分析,可以帮助商家了解自己的经营情况,并根据分析结果优化自己的经营策略。

  3. 舆情分析模块:该模块主要对旅游领域的舆情进行分析,包括用户在社交媒体上对旅游景点、旅游产品的评价等。通过对舆情数据的分析,可以帮助旅游机构了解用户对自己的评价,并及时采取相应的措施进行改进。

该系统通过将分析结果可视化展示在大屏上,使用户能够直观地了解旅游领域的大数据情况,从而更好地进行决策和规划。同时,系统还提供了数据导出和报表生成等功能,方便用户进行进一步的分析和使用。

4、核心代码


from flask import Flask, render_template
import xlrd
import xlwt
from collections import Counter
# import pandas as pdapp = Flask(__name__)# @app.route('/')
# def hello_world():
#     return 'Hello World!'
@app.route('/')
def index():return render_template("index.html")@app.route('/test')
def test():# workBook1 = xlrd.open_workbook('D:\\ProgramFiles\\docTest\excel\\TeamSettlementDetails.xls')workBook1 = xlrd.open_workbook('templates\\xls\\团队结算明细.xls')sheet1 = workBook1.sheets()[0]aa = Counter(sheet1.col_values(4))moduleName = []# Counter({'other': 7862, 'catering': 2605, 'ticket': 2486, 'hotel': 1343, 'meeting': 979, 'training': 617, 'guid': 407, 'party': 84})moduleName = sorted(set(aa))otherTotal = 0cateringTotal = 0ticketTotal = 0hotelTotal = 0meetingTotal = 0trainingTotal = 0guidTotal = 0partyTotal = 0list = []sheet1_nrows = sheet1.nrows  # 获得行数for i in range(sheet1_nrows):  # 逐行打印sheet1数据if sheet1.row_values(i)[4] == 'catering':# print(sheet1.row_values(i)[6])cateringTotal += sheet1.row_values(i)[6]if sheet1.row_values(i)[4] == 'guid':# print(sheet1.row_values(i)[6])guidTotal += sheet1.row_values(i)[6]if sheet1.row_values(i)[4] == 'ticket':# print(sheet1.row_values(i)[6])ticketTotal += sheet1.row_values(i)[6]if sheet1.row_values(i)[4] == 'hotel':# print(sheet1.row_values(i)[6])hotelTotal += sheet1.row_values(i)[6]if sheet1.row_values(i)[4] == 'meeting':# print(sheet1.row_values(i)[6])meetingTotal += sheet1.row_values(i)[6]if sheet1.row_values(i)[4] == 'other':# print(sheet1.row_values(i)[6])otherTotal += sheet1.row_values(i)[6]if sheet1.row_values(i)[4] == 'party':# print(sheet1.row_values(i)[6])partyTotal += sheet1.row_values(i)[6]if sheet1.row_values(i)[4] == 'training':# print(sheet1.row_values(i)[6])trainingTotal += sheet1.row_values(i)[6]lastNamedict=[]bb(lastNamedict)# 地图展示province=[]nums=[]map(province,nums)return render_template("test.html", moduleName=moduleName, cateringTotal=cateringTotal,guidTotal=guidTotal,ticketTotal=ticketTotal, hotelTotal=hotelTotal, meetingTotal=meetingTotal,otherTotal=otherTotal, partyTotal=partyTotal, trainingTotal=trainingTotal,lastNamedict=lastNamedict,province=province,nums=nums)@app.route('/a')
def a():province = []nums = []map(province, nums)return render_template("a.html",province=province,nums=nums)@app.route('/b')
def b():natu=[]num=[]naturePerson(natu,num)return render_template("b.html",natu=natu,num=num)@app.route('/test2')
def test2():return render_template("test2.html")@app.route('/test3')
def test3():return render_template("test3.html")@app.route('/test33')
def test33():return render_template("test33.html")@app.route('/test4')
def test4():return render_template("test4.html")@app.route('/d')
def d():img_path = '/static/before/images/bg.png'img_stream = return_img_stream(img_path)return render_template('d.html',img_stream=img_stream)"""
这是一个展示Flask如何读取服务器本地图片, 并返回图片流给前端显示的例子
"""
def return_img_stream(img_local_path):"""工具函数:获取本地图片流:param img_local_path:文件单张图片的本地绝对路径:return: 图片流"""import base64img_stream = ''with open(img_local_path, 'r') as img_f:img_stream = img_f.read()img_stream = base64.b64encode(img_stream)return img_stream# 各个景区的人流量
def naturePerson(natu,num):wb = xlrd.open_workbook("templates/xls/团队预定订单旅游板块明细数据.xls")ws = wb.sheet_by_index(0)# print(ws.row_values(0))  # 每一行作为一个列表total_list = []for row in range(ws.nrows):row_list = ws.row_values(row)total_list.append(row_list)# print(total_list)namedict = {}for items in total_list:if items[1] == None or items[1] == "TICKETGROUP_NAME":continueelse:if items[1] in namedict.keys():namedict[items[1]] += items[3]else:namedict.setdefault(items[1], items[3])sortNamedict = sorted(namedict.items(), key=lambda namedict: namedict[1], reverse=True)# print(sortNamedict)lastNamedict = []for i in range(30):lastNamedict.append(sortNamedict[i])# print(lastNamedict)for i in lastNamedict:natu.append(i[0])num.append(i[1])# 旅行社区排行榜
def bb(lastNamedict):wb = xlrd.open_workbook("templates/xls/aaa.xls")ws = wb.sheet_by_index(0)# print(ws.row_values(0))  # 每一行作为一个列表total_list = []for row in range(ws.nrows):row_list = ws.row_values(row)total_list.append(row_list)namedict = {}for items in total_list:if items[5] == None or items[5] == "AGENT_ACCOUNTNAME":continueelse:if items[5] in namedict.keys():namedict[items[5]] += items[8]else:namedict.setdefault(items[5], items[8])sortNamedict = sorted(namedict.items(), key=lambda namedict: namedict[1], reverse=True)for i in range(30):lastNamedict.append(sortNamedict[i])# 地图展示  中国各省份人流量
def map(province,nums):work = xlrd.open_workbook('templates/xls/地图.xls')sheet = work.sheets()[0]data = sheet.col_values(0)tem = Counter(data)fidata = sorted(tem.items(), key=lambda tem: tem[1], reverse=True)for i in fidata:province.append(i[0])nums.append(i[1])if __name__ == '__main__':app.run(port=5000)

5、源码获取方式

🍅由于篇幅限制,获取完整文章或源码、代做项目的,查看我的【用户名】、【专栏名称】、【顶部选题链接】就可以找到我啦🍅

感兴趣的可以先收藏起来,点赞、关注不迷路,下方查看👇🏻获取联系方式👇🏻

这篇关于python旅游大数据分析可视化大屏 游客分析+商家分析+舆情分析 计算机毕业设计(附源码)Flask框架✅的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/566121

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及