python旅游大数据分析可视化大屏 游客分析+商家分析+舆情分析 计算机毕业设计(附源码)Flask框架✅

本文主要是介绍python旅游大数据分析可视化大屏 游客分析+商家分析+舆情分析 计算机毕业设计(附源码)Flask框架✅,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

毕业设计:2023-2024年计算机专业毕业设计选题汇总(建议收藏)

毕业设计:2023-2024年最新最全计算机专业毕设选题推荐汇总

🍅感兴趣的可以先收藏起来,点赞、关注不迷路,大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助同学们顺利毕业 。🍅

1、项目介绍

技术栈:
Python语言 Flask框架 Echarts可视化 旅游数据 HTML

旅游大数据分析可视化大屏(游客+商家+舆情)

旅游大数据分析可视化系统是一个基于Python Flask框架开发的系统,用于分析和可视化旅游领域的大数据。该系统主要包括游客分析、商家分析和舆情分析三个模块。

2、项目界面

(1)旅游大数据大屏

在这里插入图片描述

(3)旅游板块分析大屏----游客分析

在这里插入图片描述

(2)旅游板块分析大屏----商家分析

在这里插入图片描述

(4)旅游板块分析大屏----旅游舆情分析

在这里插入图片描述

(5)功能模块选择

在这里插入图片描述

3、项目说明

旅游大数据分析可视化系统是一个基于Python Flask框架开发的系统,用于分析和可视化旅游领域的大数据。该系统主要包括游客分析、商家分析和舆情分析三个模块。

  1. 游客分析模块:该模块主要对游客的行为进行分析,包括游客的年龄、性别、地域分布等信息。通过对游客数据的分析,可以帮助旅游机构了解自己的客户群体,并根据分析结果制定相应的营销策略。

  2. 商家分析模块:该模块主要对旅游商家的经营情况进行分析,包括商家的销售额、客流量等指标。通过对商家数据的分析,可以帮助商家了解自己的经营情况,并根据分析结果优化自己的经营策略。

  3. 舆情分析模块:该模块主要对旅游领域的舆情进行分析,包括用户在社交媒体上对旅游景点、旅游产品的评价等。通过对舆情数据的分析,可以帮助旅游机构了解用户对自己的评价,并及时采取相应的措施进行改进。

该系统通过将分析结果可视化展示在大屏上,使用户能够直观地了解旅游领域的大数据情况,从而更好地进行决策和规划。同时,系统还提供了数据导出和报表生成等功能,方便用户进行进一步的分析和使用。

4、核心代码


from flask import Flask, render_template
import xlrd
import xlwt
from collections import Counter
# import pandas as pdapp = Flask(__name__)# @app.route('/')
# def hello_world():
#     return 'Hello World!'
@app.route('/')
def index():return render_template("index.html")@app.route('/test')
def test():# workBook1 = xlrd.open_workbook('D:\\ProgramFiles\\docTest\excel\\TeamSettlementDetails.xls')workBook1 = xlrd.open_workbook('templates\\xls\\团队结算明细.xls')sheet1 = workBook1.sheets()[0]aa = Counter(sheet1.col_values(4))moduleName = []# Counter({'other': 7862, 'catering': 2605, 'ticket': 2486, 'hotel': 1343, 'meeting': 979, 'training': 617, 'guid': 407, 'party': 84})moduleName = sorted(set(aa))otherTotal = 0cateringTotal = 0ticketTotal = 0hotelTotal = 0meetingTotal = 0trainingTotal = 0guidTotal = 0partyTotal = 0list = []sheet1_nrows = sheet1.nrows  # 获得行数for i in range(sheet1_nrows):  # 逐行打印sheet1数据if sheet1.row_values(i)[4] == 'catering':# print(sheet1.row_values(i)[6])cateringTotal += sheet1.row_values(i)[6]if sheet1.row_values(i)[4] == 'guid':# print(sheet1.row_values(i)[6])guidTotal += sheet1.row_values(i)[6]if sheet1.row_values(i)[4] == 'ticket':# print(sheet1.row_values(i)[6])ticketTotal += sheet1.row_values(i)[6]if sheet1.row_values(i)[4] == 'hotel':# print(sheet1.row_values(i)[6])hotelTotal += sheet1.row_values(i)[6]if sheet1.row_values(i)[4] == 'meeting':# print(sheet1.row_values(i)[6])meetingTotal += sheet1.row_values(i)[6]if sheet1.row_values(i)[4] == 'other':# print(sheet1.row_values(i)[6])otherTotal += sheet1.row_values(i)[6]if sheet1.row_values(i)[4] == 'party':# print(sheet1.row_values(i)[6])partyTotal += sheet1.row_values(i)[6]if sheet1.row_values(i)[4] == 'training':# print(sheet1.row_values(i)[6])trainingTotal += sheet1.row_values(i)[6]lastNamedict=[]bb(lastNamedict)# 地图展示province=[]nums=[]map(province,nums)return render_template("test.html", moduleName=moduleName, cateringTotal=cateringTotal,guidTotal=guidTotal,ticketTotal=ticketTotal, hotelTotal=hotelTotal, meetingTotal=meetingTotal,otherTotal=otherTotal, partyTotal=partyTotal, trainingTotal=trainingTotal,lastNamedict=lastNamedict,province=province,nums=nums)@app.route('/a')
def a():province = []nums = []map(province, nums)return render_template("a.html",province=province,nums=nums)@app.route('/b')
def b():natu=[]num=[]naturePerson(natu,num)return render_template("b.html",natu=natu,num=num)@app.route('/test2')
def test2():return render_template("test2.html")@app.route('/test3')
def test3():return render_template("test3.html")@app.route('/test33')
def test33():return render_template("test33.html")@app.route('/test4')
def test4():return render_template("test4.html")@app.route('/d')
def d():img_path = '/static/before/images/bg.png'img_stream = return_img_stream(img_path)return render_template('d.html',img_stream=img_stream)"""
这是一个展示Flask如何读取服务器本地图片, 并返回图片流给前端显示的例子
"""
def return_img_stream(img_local_path):"""工具函数:获取本地图片流:param img_local_path:文件单张图片的本地绝对路径:return: 图片流"""import base64img_stream = ''with open(img_local_path, 'r') as img_f:img_stream = img_f.read()img_stream = base64.b64encode(img_stream)return img_stream# 各个景区的人流量
def naturePerson(natu,num):wb = xlrd.open_workbook("templates/xls/团队预定订单旅游板块明细数据.xls")ws = wb.sheet_by_index(0)# print(ws.row_values(0))  # 每一行作为一个列表total_list = []for row in range(ws.nrows):row_list = ws.row_values(row)total_list.append(row_list)# print(total_list)namedict = {}for items in total_list:if items[1] == None or items[1] == "TICKETGROUP_NAME":continueelse:if items[1] in namedict.keys():namedict[items[1]] += items[3]else:namedict.setdefault(items[1], items[3])sortNamedict = sorted(namedict.items(), key=lambda namedict: namedict[1], reverse=True)# print(sortNamedict)lastNamedict = []for i in range(30):lastNamedict.append(sortNamedict[i])# print(lastNamedict)for i in lastNamedict:natu.append(i[0])num.append(i[1])# 旅行社区排行榜
def bb(lastNamedict):wb = xlrd.open_workbook("templates/xls/aaa.xls")ws = wb.sheet_by_index(0)# print(ws.row_values(0))  # 每一行作为一个列表total_list = []for row in range(ws.nrows):row_list = ws.row_values(row)total_list.append(row_list)namedict = {}for items in total_list:if items[5] == None or items[5] == "AGENT_ACCOUNTNAME":continueelse:if items[5] in namedict.keys():namedict[items[5]] += items[8]else:namedict.setdefault(items[5], items[8])sortNamedict = sorted(namedict.items(), key=lambda namedict: namedict[1], reverse=True)for i in range(30):lastNamedict.append(sortNamedict[i])# 地图展示  中国各省份人流量
def map(province,nums):work = xlrd.open_workbook('templates/xls/地图.xls')sheet = work.sheets()[0]data = sheet.col_values(0)tem = Counter(data)fidata = sorted(tem.items(), key=lambda tem: tem[1], reverse=True)for i in fidata:province.append(i[0])nums.append(i[1])if __name__ == '__main__':app.run(port=5000)

5、源码获取方式

🍅由于篇幅限制,获取完整文章或源码、代做项目的,查看我的【用户名】、【专栏名称】、【顶部选题链接】就可以找到我啦🍅

感兴趣的可以先收藏起来,点赞、关注不迷路,下方查看👇🏻获取联系方式👇🏻

这篇关于python旅游大数据分析可视化大屏 游客分析+商家分析+舆情分析 计算机毕业设计(附源码)Flask框架✅的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/566121

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL

如何在Visual Studio中调试.NET源码

今天偶然在看别人代码时,发现在他的代码里使用了Any判断List<T>是否为空。 我一般的做法是先判断是否为null,再判断Count。 看了一下Count的源码如下: 1 [__DynamicallyInvokable]2 public int Count3 {4 [__DynamicallyInvokable]5 get

计算机毕业设计 大学志愿填报系统 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点赞 👍 收藏 ⭐评论 📝 🍅 文末获取源码联系 👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~Java毕业设计项目~热门选题推荐《1000套》 目录 1.技术选型 2.开发工具 3.功能

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该