浙江财经大学第14届校赛 D (Disport with Jelly) 博弈

2024-01-03 13:18

本文主要是介绍浙江财经大学第14届校赛 D (Disport with Jelly) 博弈,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!



【博弈】

题意:  知道L,R 和x    明确知道x的位置,  两个人 谁去到x 谁就lose

   选择

k  >x   R=K-1  

k  <x   L=k+1

k =x  lose 


必输的 状态为   1,2,3   x=2 时  夹击 状态,     1,2,3,4,5  x=3 时  夹击状态

必赢  1,2    x=1 | x=2       1,2,3,4    无论x= 多少 都是必赢

当L,R 放大时  都可以 归结到上述情况, 故  可发现 当 L,R 长度为奇数 时 中间状态必lose  其余一定win


【code】

#include <iostream>
#include <bits/stdc++.h>using namespace std;int main()
{int t;scanf("%d",&t);int cot=0;while(t--){int l,r,x;scanf("%d %d %d",&l,&r,&x);if((l-r+1)%2==0){printf("Case #%d: Alice\n",++cot);}else{if((l+r)/2==x)printf("Case #%d: Bob\n",++cot);elseprintf("Case #%d: Alice\n",++cot);}}return 0;
}

    

123

Disport with Jelly

这篇关于浙江财经大学第14届校赛 D (Disport with Jelly) 博弈的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/565816

相关文章

poj2505(典型博弈)

题意:n = 1,输入一个k,每一次n可以乘以[2,9]中的任何一个数字,两个玩家轮流操作,谁先使得n >= k就胜出 这道题目感觉还不错,自己做了好久都没做出来,然后看了解题才理解的。 解题思路:能进入必败态的状态时必胜态,只能到达胜态的状态为必败态,当n >= K是必败态,[ceil(k/9.0),k-1]是必胜态, [ceil(ceil(k/9.0)/2.0),ceil(k/9.

hdu3389(阶梯博弈变形)

题意:有n个盒子,编号1----n,每个盒子内有一些小球(可以为空),选择一个盒子A,将A中的若干个球移到B中,满足条件B  < A;(A+B)%2=1;(A+B)%3=0 这是阶梯博弈的变形。 先介绍下阶梯博弈: 在一个阶梯有若干层,每层上放着一些小球,两名选手轮流选择一层上的若干(不能为0)小球从上往下移动,最后一次移动的胜出(最终状态小球都在地面上) 如上图所示,小球数目依次为

业务中14个需要进行A/B测试的时刻[信息图]

在本指南中,我们将全面了解有关 A/B测试 的所有内容。 我们将介绍不同类型的A/B测试,如何有效地规划和启动测试,如何评估测试是否成功,您应该关注哪些指标,多年来我们发现的常见错误等等。 什么是A/B测试? A/B测试(有时称为“分割测试”)是一种实验类型,其中您创建两种或多种内容变体——如登录页面、电子邮件或广告——并将它们显示给不同的受众群体,以查看哪一种效果最好。 本质上,A/B测

PMP–一、二、三模–分类–14.敏捷–技巧–看板面板与燃尽图燃起图

文章目录 技巧一模14.敏捷--方法--看板(类似卡片)1、 [单选] 根据项目的特点,项目经理建议选择一种敏捷方法,该方法限制团队成员在任何给定时间执行的任务数。此方法还允许团队提高工作过程中问题和瓶颈的可见性。项目经理建议采用以下哪种方法? 易错14.敏捷--精益、敏捷、看板(类似卡片)--敏捷、精益和看板方法共同的重点在于交付价值、尊重人、减少浪费、透明化、适应变更以及持续改善等方面。

2021-8-14 react笔记-2 创建组件 基本用法

1、目录解析 public中的index.html为入口文件 src目录中文件很乱,先整理文件夹。 新建components 放组件 新建assets放资源   ->/images      ->/css 把乱的文件放进去  修改App.js 根组件和index.js入口文件中的引入路径 2、新建组件 在components文件夹中新建[Name].js文件 //组件名首字母大写

2021-08-14 react笔记-1 安装、环境搭建、创建项目

1、环境 1、安装nodejs 2.安装react脚手架工具 //  cnpm install -g create-react-app 全局安装 2、创建项目 create-react-app [项目名称] 3、运行项目 npm strat  //cd到项目文件夹    进入这个页面  代表运行成功  4、打包 npm run build

用Python实现时间序列模型实战——Day 14: 向量自回归模型 (VAR) 与向量误差修正模型 (VECM)

一、学习内容 1. 向量自回归模型 (VAR) 的基本概念与应用 向量自回归模型 (VAR) 是多元时间序列分析中的一种模型,用于捕捉多个变量之间的相互依赖关系。与单变量自回归模型不同,VAR 模型将多个时间序列作为向量输入,同时对这些变量进行回归分析。 VAR 模型的一般形式为: 其中: ​ 是时间  的变量向量。 是常数向量。​ 是每个时间滞后的回归系数矩阵。​ 是误差项向量,假

AI模型的未来之路:全能与专精的博弈与共生

人工智能(AI)领域正迅速发展,伴随着技术的不断进步,AI模型的应用范围也在不断扩展。当前,AI模型的设计和使用面临两个主要趋势:全能型模型和专精型模型。这两者之间的博弈与共生将塑造未来的AI技术格局。本文将从以下七个方面探讨AI模型的未来之路,并提供实用的代码示例,以助于研究人员和从业者更好地理解和应用这些技术。 一、AI模型的全面评估与比较 1.1 全能型模型 全能型AI模型旨在在多

PMP–一、二、三模–分类–14.敏捷–技巧–原型MVP

文章目录 技巧一模14.敏捷--原型法--项目生命周期--迭代型生命周期,通过连续的原型或概念验证来改进产品或成果。每个新的原型都能带来新的干系人新的反馈和团队见解。题目中明确提到需要反馈,因此原型法比较好用。23、 [单选] 一个敏捷团队的任务是开发一款机器人。项目经理希望确保在机器人被实际建造之前,团队能够收到关于需求的早期反馈并相应地调整设计。项目经理应该使用以下哪一项来实现这个目标?

C++11/14系列学习

十一假期一直在看C++11新特性,比较出名的书《C++ Primer Plus》专门有一个章节来讲解,《C++ Primer》则将C++11的新特性融入到各个章节来学习。在假期的最后一天无意中发现实验楼有一个专门的教程来讲解,算是念念不忘,必有回响吧,特此整理出来,和大家一起学习。 作者网址:https://www.shiyanlou.com/courses/605,非常感谢! 注:本文并没有智