堆排序 Heapsort

2024-01-03 06:44
文章标签 堆排序 heapsort

本文主要是介绍堆排序 Heapsort,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。堆排序可以说是一种利用堆的概念来排序的选择排序。分为两种方法:

  1. 大顶堆:每个节点的值都大于或等于其子节点的值,在堆排序算法中用于升序排列;
  2. 小顶堆:每个节点的值都小于或等于其子节点的值,在堆排序算法中用于降序排列;

堆排序的平均时间复杂度为 Ο(nlogn)。

动态演示 :

分析 :

这里给个视频理解堆排序 :选择排序_堆排序_1什么是堆排序_哔哩哔哩_bilibili

代码 :

    public static void main(String[] args) {int[] arr = {10, 78, 65, 32, 21, 89, 13, 54, 7, 3};HeapSort(arr);}//堆排序public static void HeapSort(int[] nums) {int[] arr = Arrays.copyOf(nums, nums.length);int len = arr.length;//构建堆buildMaxHeap(arr, len);for (int i = len - 1; i > 0; i--) {swap(arr,0,i);len--;heapify(arr,0,len);}System.out.println(Arrays.toString(arr));}//构建堆public static void buildMaxHeap(int[] arr, int len) {for (int i = len >> 1; i >= 0; i--) {heapify(arr, i, len);}}private static void heapify(int[] arr, int i, int len) {int left = 2 * i + 1;int right = 2 * i + 2;int largest = i;if (left < len && arr[left] > arr[largest]) {largest = left;}if (right < len && arr[right] > arr[largest]) {largest = right;}if (largest != i) {swap(arr, i, largest);heapify(arr, largest, len);}}//交换public static void swap(int[] arr, int i, int j) {int temp = arr[i];arr[i] = arr[j];arr[j] = temp;}

这篇关于堆排序 Heapsort的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/564822

相关文章

在Java中实现堆排序的步骤详解

《在Java中实现堆排序的步骤详解》堆排序是一种基于堆数据结构的排序算法,堆是一种特殊的完全二叉树,堆排序利用堆的性质通过一系列操作将数组元素按升序或降序排列,本文给大家介绍了如何在Java中实现堆排... 目录引言一、堆排序的基本原理二、堆排序的实现步骤三、堆排序的时间复杂度和空间复杂度四、堆排序的工作流

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

优先队列与堆排序

PriorityQueue 优先级队列中的元素可以按照任意的顺序插入,却总是按照排序的顺序进行检索。无论何时调用remove方法,总会获得当前优先级队列中的最小元素(其实是返回堆顶元素),但并不是对所有元素都排序。它是采用了堆(一个可以自我调整的二叉树),执行增加删除操作后,可以让最小元素移动到根。 堆排序复习 package com.jefflee;import java.util.Arr

6.2排序——选择排序与堆排序

本篇博客梳理选择排序,包括直接选择排序与堆排序 排序全部默认排成升序 一、直接选择排序 1.算法思想 每次遍历都选出最小的和最大的,放到序列最前面/最后面 2.具体操作 (1)单趟 每次遍历都选出最小的和最大的。遍历时,遇到更小的,更新min,遇到更大的,更新max (2)单趟变整体 每趟遍历完之后,begin++,end– 程序结构如下 while(begin<end){//

堆与堆排序之初见

堆(本文只提二叉堆,当然也有多叉堆)作为一种数据结构,是一个数组,可以被看成是一个近似的完全二叉树,树上的每一个节点对应数组中的一个元素,并且除了最底层节点外,该树是完全充满的,而且是从左向右依次填充。 我们目前经常听到的名词“堆”已经被引申为“垃圾收集存储机制”,但本文提及的“堆”指的是堆数据结构。 为了后续描述方便,我们定义堆的数组为H,用H.length表示堆数组的大小,用H.size表示堆

堆排序算法剖析(基于Java)

什么是堆结构? 堆排序的关键是构造堆结构,首先谈一下堆结构的定义,堆结构是一种树结构,准确地说是一个完全二叉树,完全二叉树的定义在这里就不多赘述了,百度知道。 按照排序顺序,堆结构可以分为两种: 1.按照从小到大的顺序排序,要求非叶节点的数据要大于或等于其左、右子节点的数据。 2.按照从大到小的顺序排序,要求非叶节点的数据要小于或等于其左、右子节点的数据。 本文以从小到大的顺序为例进行介

排序算法(动图详细讲解)(直接插入排序,希尔排序,堆排序,冒泡排序)

前言:         排序的方式有很多种,不同的排序思想是不一样的。         但是排序的时间复杂度和空间复杂度也都有区别。         例如:         最简单的冒泡排序,时间复杂度为O(N)         对排序的时间复杂度为O(N*logN)。 接下来就来仔细分析每种排序的思路,并写出代码。 插入排序:  基本思想:         直接插入排序是一种简

堆的建立、插入、出堆、堆化、topk问题、堆排序(C语言实现)

堆的建立、插入、出堆、堆化、topk问题、堆排序 使用数组来存储堆 堆顶为序号0,堆底为序号 size - 1 假设树为完全二叉树,当前节点和双亲节点的关系可以通过公式表达 // 小顶堆: 对 heaptifyUp 和 heaptifyDown 函数的逻辑进行一些调整。void initHeap(float **arr, int *size) { *arr = (float *)malloc

内部排序之三:堆排序

前言    堆排序、快速排序、归并排序(下篇会写这两种排序算法)的平均时间复杂度都为O(n*logn)。要弄清楚堆排序,就要先了解下二叉堆这种数据结构。本文不打算完全讲述二叉堆的所有操作,而是着重讲述堆排序中要用到的操作。比如我们建堆的时候可以采用堆的插入操作(将元素插入到适当的位置,使新的序列仍符合堆的定义)将元素一个一个地插入到堆中,但其实我们完全没必要这么做,我们有执行操作更少的方法,

算法-排序算法:堆排序(HeapSort )【O(nlogn)】

MyArray.java /*** 数组** @author* @version 2018/8/4*/public class MyArray<E> {private E[] arr;private int size;public MyArray(int capacity){arr = (E[])new Object[capacity];size = 0;}public MyArray() {