Tracking数据集及评价指标

2024-01-03 04:20

本文主要是介绍Tracking数据集及评价指标,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、单目标跟踪数据集

目前比较常用的单目标跟踪数据集有OTB和VOT。

1、OTB数据集(Object Tracking Benchmark)
1)简介

用的最广泛的是OTB-50和OTB-100,里面涉及到灰度图像和彩色图像,也涉及到目标跟踪的11个属性,包括光照变化、尺度变化、遮挡、形变、运动模糊、快速运动、平面内旋转、平面外旋转、出视野、背景干扰、低像素。
每个图像序列都对应着两个或多个属性,每个序列都对应着一个txt文件,记录着人工标注的目标中心位置和目标的大小。
2)评价指标
两个衡量目标跟踪精准度的基本参数是Precision Plot和Success Plot
precesion plot(精度测算)主要指的是预测位置中心点与benchmark中标注的中心位置间的欧式距离,是以像素为单位进行的计算。
success plot(成功率测算)主要指的是预测目标所在benchmark的重合程度。

2、VOT数据集(Visual Object Tracking)
1)简介

VOT数据集是基于每年一次的VOT比赛的,每年都会有新的数据集产生,当然其中一部分图像序列是和OTB重合的,但是总的来说VOT数据集略难于OTB数据集,一般在这两个数据集上跑的效果都好,才算真的好,如果只在一个数据集上效果好,那只能说明这个算法的泛化能力还不够。
2)评价指标
VOT最终选取了精度和鲁棒性两个指标,因为在图像跟踪的若干(16个)评价标准中,这二者的相关性最弱。
VOT中使用的评价标准(EAO和EFO)
EAO(Expect Average Overlap Rate),用于评价性能。VOT中的使用标准A_R图
A:重叠率,就是跟踪成功状态下的平均重叠率。
R:鲁棒性,鲁棒性数值是失败总次数。
在这里插入图片描述
EFO(Equivalent Filter Operations),用于评价速度。
因为性能的比较常常因为计算机性能不同而不够直观,EFO评价标准考虑到了这一点,使用600×600的图像,做30*30窗口的滤波,来得到机器的性能。然后使用跟踪算法处理每帧图像的评价时间除以以上滤波操作的时间,得到了一个归一化的性能参数,就是EFO,是VOT14提出的标准,一直沿用到现在。

二、多目标跟踪数据集
PETS2009 : An old dataset.
KITTI-Tracking : Multi-person or multi-car tracking dataset.
MOT dataset : A dataset for multi-person detection and tracking, mostly used.
UA-DETRAC : A dataset for multi-car detection and tracking.
AVSS2018 Challenge : AVSS2018 Challenge based on UA-DETRAC is opened!
DukeMTMC : A dataset for multi-camera multi-person tracking.
PoseTrack: A dataset for multi-person pose tracking.
NVIDIA AI CITY Challenge: Challenges including “Traffic Flow Analysis”, “Anomaly Detection” and “Multi-sensor Vehicle Detection and Reidentification”, you may find some insteresting codes on their Github repos
Vis Drone: Tracking videos captured by drone-mounted cameras.
JTA Dataset: A huge dataset for pedestrian pose estimation and tracking in urban scenarios created by exploiting the highly photorealistic video game Grand Theft Auto V developed by Rockstar North.
Baidu Trajectory Interesting dataset for trajectory prediction for Autonomous drive, wait to be opened.
Path Track A new dataset with many scenes.
Recall(↑):正确匹配的检测目标数/ground truth给出的目标数
Precision(↑):正确匹配的检测目标数/检测出的目标数
MT(↑):目标的大部分被跟踪到的轨迹占比(大于百分之八十)
ML(↓):目标的大部分跟丢的轨迹占比(小于百分之二十)
PT(↓):目标部分跟踪到的轨迹占比(1 - MT – ML)
FM(↓):真实轨迹被打断的次数
IDS(↓):一条跟踪轨迹改变目标标号的次数
MOTA(↑):结合了丢失目标,虚警率,标号转换之后的准确性
MOTP(↑)::所有跟踪目标的平均边框重叠率

这篇关于Tracking数据集及评价指标的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/564555

相关文章

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

Python给Excel写入数据的四种方法小结

《Python给Excel写入数据的四种方法小结》本文主要介绍了Python给Excel写入数据的四种方法小结,包含openpyxl库、xlsxwriter库、pandas库和win32com库,具有... 目录1. 使用 openpyxl 库2. 使用 xlsxwriter 库3. 使用 pandas 库

SpringBoot定制JSON响应数据的实现

《SpringBoot定制JSON响应数据的实现》本文主要介绍了SpringBoot定制JSON响应数据的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录前言一、如何使用@jsonView这个注解?二、应用场景三、实战案例注解方式编程方式总结 前言

使用Python在Excel中创建和取消数据分组

《使用Python在Excel中创建和取消数据分组》Excel中的分组是一种通过添加层级结构将相邻行或列组织在一起的功能,当分组完成后,用户可以通过折叠或展开数据组来简化数据视图,这篇博客将介绍如何使... 目录引言使用工具python在Excel中创建行和列分组Python在Excel中创建嵌套分组Pyt

在Rust中要用Struct和Enum组织数据的原因解析

《在Rust中要用Struct和Enum组织数据的原因解析》在Rust中,Struct和Enum是组织数据的核心工具,Struct用于将相关字段封装为单一实体,便于管理和扩展,Enum用于明确定义所有... 目录为什么在Rust中要用Struct和Enum组织数据?一、使用struct组织数据:将相关字段绑

在Mysql环境下对数据进行增删改查的操作方法

《在Mysql环境下对数据进行增删改查的操作方法》本文介绍了在MySQL环境下对数据进行增删改查的基本操作,包括插入数据、修改数据、删除数据、数据查询(基本查询、连接查询、聚合函数查询、子查询)等,并... 目录一、插入数据:二、修改数据:三、删除数据:1、delete from 表名;2、truncate

Java实现Elasticsearch查询当前索引全部数据的完整代码

《Java实现Elasticsearch查询当前索引全部数据的完整代码》:本文主要介绍如何在Java中实现查询Elasticsearch索引中指定条件下的全部数据,通过设置滚动查询参数(scrol... 目录需求背景通常情况Java 实现查询 Elasticsearch 全部数据写在最后需求背景通常情况下

Java中注解与元数据示例详解

《Java中注解与元数据示例详解》Java注解和元数据是编程中重要的概念,用于描述程序元素的属性和用途,:本文主要介绍Java中注解与元数据的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参... 目录一、引言二、元数据的概念2.1 定义2.2 作用三、Java 注解的基础3.1 注解的定义3.2 内

将sqlserver数据迁移到mysql的详细步骤记录

《将sqlserver数据迁移到mysql的详细步骤记录》:本文主要介绍将SQLServer数据迁移到MySQL的步骤,包括导出数据、转换数据格式和导入数据,通过示例和工具说明,帮助大家顺利完成... 目录前言一、导出SQL Server 数据二、转换数据格式为mysql兼容格式三、导入数据到MySQL数据