Tracking数据集及评价指标

2024-01-03 04:20

本文主要是介绍Tracking数据集及评价指标,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、单目标跟踪数据集

目前比较常用的单目标跟踪数据集有OTB和VOT。

1、OTB数据集(Object Tracking Benchmark)
1)简介

用的最广泛的是OTB-50和OTB-100,里面涉及到灰度图像和彩色图像,也涉及到目标跟踪的11个属性,包括光照变化、尺度变化、遮挡、形变、运动模糊、快速运动、平面内旋转、平面外旋转、出视野、背景干扰、低像素。
每个图像序列都对应着两个或多个属性,每个序列都对应着一个txt文件,记录着人工标注的目标中心位置和目标的大小。
2)评价指标
两个衡量目标跟踪精准度的基本参数是Precision Plot和Success Plot
precesion plot(精度测算)主要指的是预测位置中心点与benchmark中标注的中心位置间的欧式距离,是以像素为单位进行的计算。
success plot(成功率测算)主要指的是预测目标所在benchmark的重合程度。

2、VOT数据集(Visual Object Tracking)
1)简介

VOT数据集是基于每年一次的VOT比赛的,每年都会有新的数据集产生,当然其中一部分图像序列是和OTB重合的,但是总的来说VOT数据集略难于OTB数据集,一般在这两个数据集上跑的效果都好,才算真的好,如果只在一个数据集上效果好,那只能说明这个算法的泛化能力还不够。
2)评价指标
VOT最终选取了精度和鲁棒性两个指标,因为在图像跟踪的若干(16个)评价标准中,这二者的相关性最弱。
VOT中使用的评价标准(EAO和EFO)
EAO(Expect Average Overlap Rate),用于评价性能。VOT中的使用标准A_R图
A:重叠率,就是跟踪成功状态下的平均重叠率。
R:鲁棒性,鲁棒性数值是失败总次数。
在这里插入图片描述
EFO(Equivalent Filter Operations),用于评价速度。
因为性能的比较常常因为计算机性能不同而不够直观,EFO评价标准考虑到了这一点,使用600×600的图像,做30*30窗口的滤波,来得到机器的性能。然后使用跟踪算法处理每帧图像的评价时间除以以上滤波操作的时间,得到了一个归一化的性能参数,就是EFO,是VOT14提出的标准,一直沿用到现在。

二、多目标跟踪数据集
PETS2009 : An old dataset.
KITTI-Tracking : Multi-person or multi-car tracking dataset.
MOT dataset : A dataset for multi-person detection and tracking, mostly used.
UA-DETRAC : A dataset for multi-car detection and tracking.
AVSS2018 Challenge : AVSS2018 Challenge based on UA-DETRAC is opened!
DukeMTMC : A dataset for multi-camera multi-person tracking.
PoseTrack: A dataset for multi-person pose tracking.
NVIDIA AI CITY Challenge: Challenges including “Traffic Flow Analysis”, “Anomaly Detection” and “Multi-sensor Vehicle Detection and Reidentification”, you may find some insteresting codes on their Github repos
Vis Drone: Tracking videos captured by drone-mounted cameras.
JTA Dataset: A huge dataset for pedestrian pose estimation and tracking in urban scenarios created by exploiting the highly photorealistic video game Grand Theft Auto V developed by Rockstar North.
Baidu Trajectory Interesting dataset for trajectory prediction for Autonomous drive, wait to be opened.
Path Track A new dataset with many scenes.
Recall(↑):正确匹配的检测目标数/ground truth给出的目标数
Precision(↑):正确匹配的检测目标数/检测出的目标数
MT(↑):目标的大部分被跟踪到的轨迹占比(大于百分之八十)
ML(↓):目标的大部分跟丢的轨迹占比(小于百分之二十)
PT(↓):目标部分跟踪到的轨迹占比(1 - MT – ML)
FM(↓):真实轨迹被打断的次数
IDS(↓):一条跟踪轨迹改变目标标号的次数
MOTA(↑):结合了丢失目标,虚警率,标号转换之后的准确性
MOTP(↑)::所有跟踪目标的平均边框重叠率

这篇关于Tracking数据集及评价指标的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/564555

相关文章

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

Python实现将MySQL中所有表的数据都导出为CSV文件并压缩

《Python实现将MySQL中所有表的数据都导出为CSV文件并压缩》这篇文章主要为大家详细介绍了如何使用Python将MySQL数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到... python将mysql数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到另一个

SpringBoot整合jasypt实现重要数据加密

《SpringBoot整合jasypt实现重要数据加密》Jasypt是一个专注于简化Java加密操作的开源工具,:本文主要介绍详细介绍了如何使用jasypt实现重要数据加密,感兴趣的小伙伴可... 目录jasypt简介 jasypt的优点SpringBoot使用jasypt创建mapper接口配置文件加密

使用Python高效获取网络数据的操作指南

《使用Python高效获取网络数据的操作指南》网络爬虫是一种自动化程序,用于访问和提取网站上的数据,Python是进行网络爬虫开发的理想语言,拥有丰富的库和工具,使得编写和维护爬虫变得简单高效,本文将... 目录网络爬虫的基本概念常用库介绍安装库Requests和BeautifulSoup爬虫开发发送请求解

Oracle存储过程里操作BLOB的字节数据的办法

《Oracle存储过程里操作BLOB的字节数据的办法》该篇文章介绍了如何在Oracle存储过程中操作BLOB的字节数据,作者研究了如何获取BLOB的字节长度、如何使用DBMS_LOB包进行BLOB操作... 目录一、缘由二、办法2.1 基本操作2.2 DBMS_LOB包2.3 字节级操作与RAW数据类型2.