Ubuntu 18.04 LTS安装numba python性能优化的比较:numba,pypy, cython

2024-01-02 14:38

本文主要是介绍Ubuntu 18.04 LTS安装numba python性能优化的比较:numba,pypy, cython,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

 

安装很简单, 我就不多废话了, 直接上指令:

sudo apt-get install llvm
sudo -H pip install numba

python 程序性能优化的套路一般有两种:1)jit, 即just in time compiler, 即时编译器,在运行时将某些函数编译成二进程代码,使用这种方式的有:numba 和pypy;2)将python代码转换成c++/c代码,然后编译执行,这种方式有:cython和nuitka。总而言之,转换成c++/c代码以后编译成二进制文件执行的效率比用numba和pypy即时编译执行的效率要高。

1. 首先看一下python写的求质数的函数 以及 用 numba的jit优化的函数

# main.py# 纯python语言写的求质数的代码
def primes_python(nb_primes):p = []n = 2while len(p) < nb_primes:# Is n prime?for i in p:if n % i == 0:break# If no break occurred in the loopelse:p.append(n)n += 1return p# 使用numba的jit优化的代码,只需要在上面的函数加一行代码
from numba import jit@jit
def primes_jit(nb_primes):p = []n = 2while len(p) < nb_primes:# Is n prime?for i in p:if n % i == 0:break# If no break occurred in the loopelse:p.append(n)n += 1return p


 

2. 新建一个primes.pyx文件,写一个cython函数,其中声明了变量的类型

# primes.pyxdef primes(int nb_primes):cdef int n, i, len_pcdef int p[1000]if nb_primes > 1000:nb_primes = 1000len_p = 0  # The current number of elements in p.n = 2while len_p < nb_primes:# Is n prime?for i in p[:len_p]:if n % i == 0:break# If no break occurred in the loop, we have a prime.else:p[len_p] = nlen_p += 1n += 1# Let's return the result in a python list:result_as_list  = [prime for prime in p[:len_p]]return result_as_list


再建立一个primes_python.pyx文件,新建一个和之前python里面写的一样的函数,作为对比。

# primes_python.pyxdef primes_python(nb_primes):p = []n = 2while len(p) < nb_primes:# Is n prime?for i in p:if n % i == 0:break# If no break occurred in the loopelse:p.append(n)n += 1return p


新建setup.py文件,用来编译.pyx函数

from distutils.core import setup
from Cython.Build import cythonizesetup(ext_modules=cythonize(["primes.pyx", "primes_python.pyx"],annotate=True)
)


 
# 编译命令用这个

# python setup.py build_ext --inplace


使用python setup.py build_ext --inplace编译后可以得到.pyd文件,就是可以导入的python库了。

3. 修改一下main.py, 加入函数调用和度量

# main.py 的完整内容import primes
import primes_python
import timeit
from numba import jitdef primes_python(nb_primes):p = []n = 2while len(p) < nb_primes:# Is n prime?for i in p:if n % i == 0:break# If no break occurred in the loopelse:p.append(n)n += 1return p@jit
def primes_jit(nb_primes):p = []n = 2while len(p) < nb_primes:# Is n prime?for i in p:if n % i == 0:break# If no break occurred in the loopelse:p.append(n)n += 1return pif __name__ == "__main__":repeat_times = 1000t1 = timeit.timeit(stmt="primes_python(1000)",setup="from __main__ import primes_python", number=repeat_times)print(f"run in python: {t1}s")t2 = timeit.timeit(stmt="primes.primes(1000)",setup="import primes", number=repeat_times)print(f"run cython with cdef: {t2}s")t3 = timeit.timeit(stmt="primes_jit(1000)",setup="from __main__ import primes_jit", number=repeat_times)print(f"run in python with numba jit: {t3}s")t4 = timeit.timeit(stmt="primes_python.primes_python(1000)",setup="import primes_python", number=repeat_times)print(f"run cython without cdef: {t4}s")运行一下,得到的结果如下:run in python: 28.519053545829927s
run cython with cdef: 1.6289360376895452s
run in python with numba jit: 2.0565857326599577s
run cython without cdef: 13.221758278866588s


4. 测试一下pypy的结果,建立primes_pypy.py文件:

# primes_pypy.pyimport timeitdef primes_python(nb_primes):p = []n = 2while len(p) < nb_primes:# Is n prime?for i in p:if n % i == 0:break# If no break occurred in the loopelse:p.append(n)n += 1return pif __name__ == "__main__":repeat_times = 1000t1 = timeit.timeit(stmt="primes_python(1000)",setup="from __main__ import primes_python", number=repeat_times)print(f"run in pypy: {t1}s")


使用pypy3 primes_pypy.py 运行文件, 得到结果如下:

run in pypy: 3.0445395345987682s
5.  nuitka的暂时没弄出来, 总体的运行结果如下:

run in python: 28.519053545829927s
run cython with cdef: 1.6289360376895452s
run in python with numba jit: 2.0565857326599577s
run cython without cdef: 13.221758278866588srun in pypy: 3.0445395345987682s


基本上jit的效果很明显,也不用改动python代码。

原文链接:https://blog.csdn.net/xiaozisheng2008_/article/details/85266511

这篇关于Ubuntu 18.04 LTS安装numba python性能优化的比较:numba,pypy, cython的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/562745

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

百度/小米/滴滴/京东,中台架构比较

小米中台建设实践 01 小米的三大中台建设:业务+数据+技术 业务中台--从业务说起 在中台建设中,需要规范化的服务接口、一致整合化的数据、容器化的技术组件以及弹性的基础设施。并结合业务情况,判定是否真的需要中台。 小米参考了业界优秀的案例包括移动中台、数据中台、业务中台、技术中台等,再结合其业务发展历程及业务现状,整理了中台架构的核心方法论,一是企业如何共享服务,二是如何为业务提供便利。

Zookeeper安装和配置说明

一、Zookeeper的搭建方式 Zookeeper安装方式有三种,单机模式和集群模式以及伪集群模式。 ■ 单机模式:Zookeeper只运行在一台服务器上,适合测试环境; ■ 伪集群模式:就是在一台物理机上运行多个Zookeeper 实例; ■ 集群模式:Zookeeper运行于一个集群上,适合生产环境,这个计算机集群被称为一个“集合体”(ensemble) Zookeeper通过复制来实现

CentOS7安装配置mysql5.7 tar免安装版

一、CentOS7.4系统自带mariadb # 查看系统自带的Mariadb[root@localhost~]# rpm -qa|grep mariadbmariadb-libs-5.5.44-2.el7.centos.x86_64# 卸载系统自带的Mariadb[root@localhost ~]# rpm -e --nodeps mariadb-libs-5.5.44-2.el7

Centos7安装Mongodb4

1、下载源码包 curl -O https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-rhel70-4.2.1.tgz 2、解压 放到 /usr/local/ 目录下 tar -zxvf mongodb-linux-x86_64-rhel70-4.2.1.tgzmv mongodb-linux-x86_64-rhel70-4.2.1/

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传