【QT 自研上位机 与 ESP32下位机联调>>>串口控制GPIO-基础样例-联合文章】

本文主要是介绍【QT 自研上位机 与 ESP32下位机联调>>>串口控制GPIO-基础样例-联合文章】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【QT 自研上位机 与 ESP32下位机联调>>>串口控制GPIO-基础样例-联合文章】

  • 1、概述
  • 2、实验环境
  • 3、 自我总结
  • 4、 实验过程
    • 1、验证上位机QT程序
      • 1、下载样例代码
      • 2、修改qt程序
      • 3、运行测试验证
    • 2、验证下位机ESP32程序
      • 1、下载样例代码
      • 2、更改ESP32代码,编译下载
      • 3、验证
    • 3、联合调试-ESP32和qt上位机
      • 1、硬件连接
      • 2、验证
  • 5、代码连接
  • 6、细节部分
      • (1)常见错误解决办法:
      • (2)ESP32工程下载后,先清理下
      • (3)逻辑分析仪,需要跳变信号触发
      • (4)逻辑分析仪,触发触发选择不点下面两个
  • 7、总结

1、概述

最为新手,想要快速入门相关设备,比如ESP32,可能最好的方式就是直接手动去敲一遍代码,而串口算是单片机入门中,必不可少的一个基础课程,很多通讯,以及打印各种信息,都需要,而加入一些交互,能让我们更好调试单片机。

我打算出3章,像之前STM32那种单片机,调试串口一样。
本次第三章,和上位机进行联合调试。

第一章,也就是串口基础篇,简单调试ESP32,进行交互。
第二章,将会结合GPIO,进行一些简单外围控制。
第三章,将会结合上位机,使用自制上位机进行联合调试。

2、实验环境

ESP32说明:ESP32-S3 是一款集成 2.4 GHz Wi-Fi 和 Bluetooth 5 (LE) 的 MCU 芯片,支持远距离模式 (Long Range)。ESP32-S3 搭载 Xtensa® 32 位 LX7 双核处理器,主频高达 240 MHz,内置 512 KB SRAM (TCM),具有 45 个可编程 GPIO 管脚和丰富的通信接口。ESP32-S3 支持更大容量的高速 Octal SPI flash 和片外 RAM,支持用户配置数据缓存与指令缓存。

硬件信息:开发板 ESP32-S3-DevKitM-1(EPS32-S3-wroom-1模块)
调试环境:Windows下
串口工具:USB转串口TTL/232等
其他硬件:逻辑分析仪,杜邦线,两个usb-type-c连接线等。
在这里插入图片描述

3、 自我总结

有了调试串口的经验,再加上调试IO的经验,其实我们就很容易合在一起,就像那个很有意思的笑话,苹果的英文单词和笔的单词,组合在一起的就是笔记本了。
如下,请允许我在原本应该严肃的科技博文中,加入一个搞笑的部分。
在这里插入图片描述
但是这个道理是相通的,我们学习一个东西的时候,其实一块一块学的,或者说以小见大。
举个例子,我们之前学习了ESP32的串口,

【PC电脑windows编写代码-学习uart0串口编写代码-串口程序-ESP32-简单通讯交互-基础样例学习】

同时又做了ESP32的IO实验,

【PC电脑windows-学习样例generic_gpio-拓展GPIO-ESP32的GPIO程序-问题解决-GPIO输出实验-基础样例学习(2)】

那么现在组合起来就可以了。

自己之前就有做联合文章的经历,从上位机,到下位机,一整条链路,一次性打通,学习每个部分,最后组合在一起,其实多少有些分繁琐而简化。

就像之前文章一样。

【QT 自研上位机 与 STM32F4xx下位机联调>>>can通信测试-基础样例-联合文章】

【QT 自研上位机 与 STM32F103下位机联调>>>串口uart通信测试-基础样例-联合文章】

也就有了本次实验,以及这篇文章。

4、 实验过程

1、验证上位机QT程序

上位机这块我们采用之前的串口工厂简单修改,来完成我们的目标。
【QT 5 调试软件+串口相关初试串口+基础样例】

1、下载样例代码

(1)下载代码
代码连接:https://download.csdn.net/download/qq_22146161/86722251
使用qt开,然后硬件转换器短接。
在这里插入图片描述
qt运行原件如下,可以看到能收到自己发出的“123”
在这里插入图片描述

2、修改qt程序

我们简单改写程序,发出990和991,好和ESP32配合

(1)ui界面修改
在这里插入图片描述
(2)转到槽函数
在这里插入图片描述
在这里插入图片描述

(3)加入代码
在这里插入图片描述

3、运行测试验证

在这里插入图片描述

2、验证下位机ESP32程序

样例用的下ESP32,如下文章中的。同样的也是验证下。

【PC电脑windows编写代码-ESP32-串口控制GPIO编写代码-简单通讯交互控制IO-进阶样例学习-2】

1、下载样例代码

代码链接:https://download.csdn.net/download/qq_22146161/88678030

2、更改ESP32代码,编译下载

我们在990这条命令上,专门做了个双IO拉低拉高,这样好检验。

#include <stdio.h>
#include <stdbool.h>
#include <unistd.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "driver/uart.h"
#include "string.h"
#include "driver/gpio.h"#define TX_PIN 18
#define RX_PIN 19
#define BUF_SIZE 1024const char *expected_string0 = "990";
const char *expected_string1 = "991";
const char *expected_string2 = "992";
const char *expected_string3 = "993";
const char *expected_string4 = "994";
const char *expected_string5 = "995";
const char *expected_string6 = "996";#define GPIO_OUTPUT_IO_0    35
#define GPIO_OUTPUT_IO_1    36
#define GPIO_OUTPUT_IO_2    37
#define GPIO_OUTPUT_IO_3    38#define GPIO_OUTPUT_PIN_SEL  ((1ULL<<GPIO_OUTPUT_IO_0) |(1ULL<<GPIO_OUTPUT_IO_1) | (1ULL<<GPIO_OUTPUT_IO_2) | (1ULL<<GPIO_OUTPUT_IO_3)) // 配置GPIO_OUT位寄存器void gpio_init(void)
{gpio_config_t io_conf;  // 定义一个gpio_config类型的结构体,下面的都算对其进行的配置io_conf.intr_type = GPIO_INTR_DISABLE;  // 禁止中断  io_conf.mode = GPIO_MODE_OUTPUT;            // 选择输出模式io_conf.pin_bit_mask = GPIO_OUTPUT_PIN_SEL; // 配置GPIO_OUT寄存器io_conf.pull_down_en = 0;                   // 禁止下拉io_conf.pull_up_en = 1;                     // 禁止上拉gpio_config(&io_conf);                      // 最后配置使能
}void app_main(void) {gpio_init();// 配置UART参数uart_config_t uart_config = {.baud_rate = 115200,.data_bits = UART_DATA_8_BITS,.parity = UART_PARITY_DISABLE,.stop_bits = UART_STOP_BITS_1,.flow_ctrl = UART_HW_FLOWCTRL_DISABLE};uart_param_config(UART_NUM_0, &uart_config);// 设置UART1使用的TX和RX引脚uart_set_pin(UART_NUM_0, TX_PIN, RX_PIN, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE);// 安装UART驱动程序,使用默认缓冲区大小uart_driver_install(UART_NUM_0, BUF_SIZE * 2, BUF_SIZE * 2, 0, NULL, 0);// 发送和接收数据的缓冲区uint8_t *data = (uint8_t *)malloc(BUF_SIZE);const char *test_str0 = "write_this_is_990";const char *test_str1 = "write_this_is_991";const char *test_str2 = "write_this_is_992";const char *test_str3 = "write_this_is_993";const char *test_str4 = "write_this_is_994";const char *test_str5 = "write_this_is_995";const char *test_str6 = "write_this_is_996";while (1) {// 发送数据const char *test_str = "Hello from UART01!";uart_write_bytes(UART_NUM_0, test_str, strlen(test_str));// 从UART接收数据int length = 0;ESP_ERROR_CHECK(uart_get_buffered_data_len(UART_NUM_0, (size_t *)&length));length = uart_read_bytes(UART_NUM_0, data, length, 20 / portTICK_PERIOD_MS);if (length > 0) {data[length] = 0; // 确保字符串以null终止printf("Received data: '%s'\n", (char *)data);gpio_set_level(GPIO_OUTPUT_IO_0, 0);            // 把这个GPIO输出地电平vTaskDelay(10 / portTICK_PERIOD_MS);gpio_set_level(GPIO_OUTPUT_IO_0, 1);          vTaskDelay(10 / portTICK_PERIOD_MS);//控制第一个IO上下if(strstr ((const char *)data, expected_string0)!=NULL ){uart_write_bytes(UART_NUM_0, test_str0, strlen(test_str0));gpio_set_level(GPIO_OUTPUT_IO_0, 0);            // 把这个GPIO输出地电平vTaskDelay(1000 / portTICK_PERIOD_MS);gpio_set_level(GPIO_OUTPUT_IO_1, 0);            // 把这个GPIO输出地电平vTaskDelay(1000 / portTICK_PERIOD_MS);gpio_set_level(GPIO_OUTPUT_IO_1, 1);            // 把这个GPIO输出地高平vTaskDelay(1000 / portTICK_PERIOD_MS);gpio_set_level(GPIO_OUTPUT_IO_0, 1);            // 把这个GPIO输出地高平vTaskDelay(1000 / portTICK_PERIOD_MS);printf("this is 990!");// break;}if(strstr ((const char *)data, expected_string1) !=NULL ){uart_write_bytes(UART_NUM_0, test_str1, strlen(test_str1));gpio_set_level(GPIO_OUTPUT_IO_0, 0);            // 把这个GPIO输出低电平printf("this is 991!");//  break;}//控制第二个IO上下if(strstr ((const char *)data, expected_string2)!=NULL ){uart_write_bytes(UART_NUM_0, test_str2, strlen(test_str2));gpio_set_level(GPIO_OUTPUT_IO_1, 1);            // 把这个GPIO输出高电平printf("this is 992!");//   break;}if(strstr ((const char *)data, expected_string3)!=NULL ){uart_write_bytes(UART_NUM_0, test_str3, strlen(test_str3));gpio_set_level(GPIO_OUTPUT_IO_1, 0);            // 把这个GPIO输出低电平printf("this is 993!");//   break;}//控制第三个IO上下if(strstr ((const char *)data, expected_string4)!=NULL ){uart_write_bytes(UART_NUM_0, test_str4, strlen(test_str4));gpio_set_level(GPIO_OUTPUT_IO_2, 1);            // 把这个GPIO输出高电平printf("this is 994");//   break;}if(strstr ((const char *)data, expected_string5)!=NULL ){uart_write_bytes(UART_NUM_0, test_str5, strlen(test_str5));gpio_set_level(GPIO_OUTPUT_IO_2, 0);            // 把这个GPIO输出低电平printf("this is 995!");//   break;}//单独功能if(strstr ((const char *)data, expected_string6)!=NULL ){uart_write_bytes(UART_NUM_0, test_str6, strlen(test_str6));//gpio_set_level(GPIO_OUTPUT_IO_2, 0);            // 把这个GPIO输出低电平printf("this is 996!");//   break;}}vTaskDelay(2000 / portTICK_PERIOD_MS);}
}

在这里插入图片描述

下载完了按下复位

3、验证

硬件连接

3/5V IN ---  ESP32-18
3V OUT  ---  ESP32-19
GND     ---  GND

在这里插入图片描述
然后使用一个串口软件打开,看看是否能收到消息。

在这里插入图片描述

3、联合调试-ESP32和qt上位机

1、硬件连接

其实到目前位置,硬件连接已经完成了。
当然我们还需要接上逻辑分析仪

3/5V IN ---  ESP32-18
3V OUT  ---  ESP32-19
GND     ---  GND//逻辑分析仪
GND  ---- GND
0通道 ---- ESP32-35
GND  ---- GND
1通道 ---- ESP32-36

2、验证

(1)上位机软件和逻辑分析仪截图说明
如下,为上位机发送990后,上位机>>>通过通讯>>>单片机>>>IO控制>>>逻辑分析仪,整条链路。
在这里插入图片描述
(1)代码和逻辑分析仪截图说明
这块要简单分析下代码,35GPIO先跳变了下,然后拉低3S,在此期间36GPIO拉低了1S。
在这里插入图片描述

5、代码连接

一套解决办法吧,需要代码的自取。
代码链接:https://download.csdn.net/download/qq_22146161/88689386

6、细节部分

(1)常见错误解决办法:

调试单片机的时候,或者说调试串口的时候,其实很难问题穷尽,但是一些方式,可以帮我们更快定位。

  1. UART配置错误:确保你的UART配置与你所使用的引脚和硬件设置相匹配。检查波特率、数据位、校验位和停止位是否正确配置。
  2. GPIO引脚不正确或被占用:检查你用作UART的GPIO引脚是否正确,并且没有被其他功能(如SPI、I2C或内置功能)占用。
  3. UART驱动安装问题:确保UART驱动正确安装,没有内存分配错误或其他问题。
  4. 缓冲区问题:检查是否有足够的空间在UART的发送缓冲区中存储要发送的数据。如果缓冲区已满,可能需要增加缓冲区大小或等待缓冲区可用。
  5. 硬件问题:检查你的ESP32开发板和任何连接的串行设备是否存在硬件故障。
    电源和接地问题:确保所有设备都有适当的电源和接地。

为了解决这个问题,可以尝试以下步骤:

  • 重新检查UART配置:确保UART的初始化和配置正确无误。
  • 检查GPIO引脚:验证所选择的GPIO引脚是否适合用作UART,且未被占用。
  • 检查驱动安装:确保使用 uart_driver_install 函数正确安装了UART驱动。
  • 增加缓冲区大小:如果需要,可以在调用 uart_driver_install 时增加缓冲区大小。
  • 硬件检查:检查ESP32开发板和相关硬件是否有任何明显的损坏或连接问题。

(2)ESP32工程下载后,先清理下

自己在下载过程中,发现直接编译也就是“idf.py build”的时候,会提示下,最好先清理下,然后重新编译。

在这里插入图片描述

(3)逻辑分析仪,需要跳变信号触发

如下,逻辑分析仪,在使用的时候,还是需要注意一下,它需要一个跳变信号,否则就会像下图一样,一直等待。
在这里插入图片描述
而且实际抓取信号,只后半部分,被拉高部分。
在这里插入图片描述
所以我们时间调试时,只要收到消息,先来个跳变信号触发下。
在这里插入图片描述

(4)逻辑分析仪,触发触发选择不点下面两个

实际想直接进行采集的,就把下面两个也点上了,实际测试应该是不选择下面两个
在这里插入图片描述

7、总结

如此一来,ESP32也有联合文章了。

这篇关于【QT 自研上位机 与 ESP32下位机联调>>>串口控制GPIO-基础样例-联合文章】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/562432

相关文章

Spring Security 基于表达式的权限控制

前言 spring security 3.0已经可以使用spring el表达式来控制授权,允许在表达式中使用复杂的布尔逻辑来控制访问的权限。 常见的表达式 Spring Security可用表达式对象的基类是SecurityExpressionRoot。 表达式描述hasRole([role])用户拥有制定的角色时返回true (Spring security默认会带有ROLE_前缀),去

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【Linux 从基础到进阶】Ansible自动化运维工具使用

Ansible自动化运维工具使用 Ansible 是一款开源的自动化运维工具,采用无代理架构(agentless),基于 SSH 连接进行管理,具有简单易用、灵活强大、可扩展性高等特点。它广泛用于服务器管理、应用部署、配置管理等任务。本文将介绍 Ansible 的安装、基本使用方法及一些实际运维场景中的应用,旨在帮助运维人员快速上手并熟练运用 Ansible。 1. Ansible的核心概念

AI基础 L9 Local Search II 局部搜索

Local Beam search 对于当前的所有k个状态,生成它们的所有可能后继状态。 检查生成的后继状态中是否有任何状态是解决方案。 如果所有后继状态都不是解决方案,则从所有后继状态中选择k个最佳状态。 当达到预设的迭代次数或满足某个终止条件时,算法停止。 — Choose k successors randomly, biased towards good ones — Close

Java 后端接口入参 - 联合前端VUE 使用AES完成入参出参加密解密

加密效果: 解密后的数据就是正常数据: 后端:使用的是spring-cloud框架,在gateway模块进行操作 <dependency><groupId>com.google.guava</groupId><artifactId>guava</artifactId><version>30.0-jre</version></dependency> 编写一个AES加密

音视频入门基础:WAV专题(10)——FFmpeg源码中计算WAV音频文件每个packet的pts、dts的实现

一、引言 从文章《音视频入门基础:WAV专题(6)——通过FFprobe显示WAV音频文件每个数据包的信息》中我们可以知道,通过FFprobe命令可以打印WAV音频文件每个packet(也称为数据包或多媒体包)的信息,这些信息包含该packet的pts、dts: 打印出来的“pts”实际是AVPacket结构体中的成员变量pts,是以AVStream->time_base为单位的显

C 语言基础之数组

文章目录 什么是数组数组变量的声明多维数组 什么是数组 数组,顾名思义,就是一组数。 假如班上有 30 个同学,让你编程统计每个人的分数,求最高分、最低分、平均分等。如果不知道数组,你只能这样写代码: int ZhangSan_score = 95;int LiSi_score = 90;......int LiuDong_score = 100;int Zhou

c++基础版

c++基础版 Windows环境搭建第一个C++程序c++程序运行原理注释常亮字面常亮符号常亮 变量数据类型整型实型常量类型确定char类型字符串布尔类型 控制台输入随机数产生枚举定义数组数组便利 指针基础野指针空指针指针运算动态内存分配 结构体结构体默认值结构体数组结构体指针结构体指针数组函数无返回值函数和void类型地址传递函数传递数组 引用函数引用传参返回指针的正确写法函数返回数组

控制反转 的种类

之前对控制反转的定义和解释都不是很清晰。最近翻书发现在《Pro Spring 5》(免费电子版在文章最后)有一段非常不错的解释。记录一下,有道翻译贴出来方便查看。如有请直接跳过中文,看后面的原文。 控制反转的类型 控制反转的类型您可能想知道为什么有两种类型的IoC,以及为什么这些类型被进一步划分为不同的实现。这个问题似乎没有明确的答案;当然,不同的类型提供了一定程度的灵活性,但