【最优化方法】对称矩阵的对角化

2024-01-02 11:52

本文主要是介绍【最优化方法】对称矩阵的对角化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 正交化方法
    • 示例
  • 矩阵正交化

正交化方法

R n R^n Rn 中线性无关组 a 1 , a 2 , a 3 , … , a n a_1,a_2,a_3,\dots,a_n a1,a2,a3,,an,令
β 1 = α 1 β 2 = α 2 − [ α 2 β 1 ] ∣ ∣ β 1 ∣ ∣ β 1 β 3 = α 3 − [ α 3 β 1 ] ∣ ∣ β 1 ∣ ∣ β 1 − [ α 3 β 2 ] ∣ ∣ β 2 ∣ ∣ β 2 β n = α 3 − [ α n β 1 ] ∣ ∣ β 1 ∣ ∣ β 1 − ⋯ − [ α n β n − 1 ] ∣ ∣ β n − 1 ∣ ∣ β n − 1 \begin{aligned} & \beta_1 = \alpha_1 \\ & \beta_2 = \alpha_2 - {\frac{[\alpha_2\beta_1]}{||\beta_1||}} \beta_1 \\ & \beta_3 = \alpha_3 - {\frac{[\alpha_3\beta_1]}{||\beta_1||}} \beta_1 - {\frac{[\alpha_3\beta_2]}{||\beta_2||}} \beta_2 \\ & \beta_n = \alpha_3 - {\frac{[\alpha_n\beta_1]}{||\beta_1||}} \beta_1 - \cdots - {\frac{[\alpha_n\beta_{n-1}]}{||\beta_{n-1}||}} \beta_{n-1} \end{aligned} β1=α1β2=α2∣∣β1∣∣[α2β1]β1β3=α3∣∣β1∣∣[α3β1]β1∣∣β2∣∣[α3β2]β2βn=α3∣∣β1∣∣[αnβ1]β1∣∣βn1∣∣[αnβn1]βn1

该方法称为施密特正交化(Gram–Schmidt process

[ x , y ] [x, y] [x,y] 为向量的内积, ∣ ∣ x ∣ ∣ = [ x , x ] ||x||=[x,x] ∣∣x∣∣=[x,x]
[ x , y ] = x 1 y 1 + x 2 y 2 + ⋯ + x n y n [x, y] = x_1y_1 + x_2y_2 + \cdots + x_ny_n [x,y]=x1y1+x2y2++xnyn

示例

将向量组
α 1 = ( 1 , 1 , 0 , 0 ) T , α 2 = ( 1 , 0 , 1 , 0 ) T α 3 = ( − 1 , 0 , 0 , 1 ) T , α 4 = ( 1 , − 1 , − 1 , 1 ) T \begin{align} & \alpha_1=(1,1,0,0)^T,\alpha_2=(1,0,1,0)^T \\ & \alpha_3=(-1,0,0,1)^T,\alpha_4=(1,-1,-1,1)^T \\ \end{align} α1=(1,1,0,0)T,α2=(1,0,1,0)Tα3=(1,0,0,1)T,α4=(1,1,1,1)T

标准正交化

解: 先正交化
β 1 = ( 1 , 1 , 0 , 0 ) T β 2 = ( 1 , 0 , 1 , 0 ) T − 1 2 ( 1 , 1 , 0 , 0 ) T = 1 2 ( 1 , − 1 , 2 , 0 ) T β 3 = ( − 1 , 0 , 0 , 1 ) T + 1 2 ( 1 , 1 , 0 , 0 ) T + 1 6 ( 1 , − 1 , 2 , 0 ) T = 1 3 ( − 1 , 1 , 1 , 3 ) T β 4 = ( 1 , − 1 , − 1 , 1 ) T − 0 − 0 − 0 = ( 1 , − 1 , − 1 , 1 ) T \begin{aligned} & \beta_1 =(1,1,0,0)^T \\ & \beta_2 = (1,0,1,0)^T-\frac{1}{2}(1,1,0,0)^T = \frac{1}{2}(1,-1,2,0)^T \\ & \beta_3 = (-1,0,0,1)^T + \frac{1}{2}(1,1,0,0)^T + \frac{1}{6}(1,-1,2,0)^T = \frac{1}{3}(-1,1,1,3)^T \\ & \beta_4 = (1,-1,-1,1)^T-0-0-0=(1,-1,-1,1)^T \end{aligned} β1=(1,1,0,0)Tβ2=(1,0,1,0)T21(1,1,0,0)T=21(1,1,2,0)Tβ3=(1,0,0,1)T+21(1,1,0,0)T+61(1,1,2,0)T=31(1,1,1,3)Tβ4=(1,1,1,1)T000=(1,1,1,1)T

再标准化
β 1 = 1 2 ( 1 , 1 , 0 , 0 ) T β 2 = 1 6 ( 1 , − 1 , 2 , 0 ) T β 3 = 1 2 3 ( − 1 , 1 , 1 , 3 ) T β 4 = 1 2 ( 1 , − 1 , − 1 , 1 ) T \begin{aligned} & \beta_1 = \frac{1}{\sqrt2} (1,1,0,0)^T \\ & \beta_2 = \frac{1}{\sqrt6} (1,-1,2,0)^T \\ & \beta_3 = \frac{1}{2\sqrt3} (-1,1,1,3)^T \\ & \beta_4 = \frac{1}{2} (1,-1,-1,1)^T \end{aligned} β1=2 1(1,1,0,0)Tβ2=6 1(1,1,2,0)Tβ3=23 1(1,1,1,3)Tβ4=21(1,1,1,1)T

矩阵正交化

A = ( 0 1 1 − 1 1 0 − 1 1 1 − 1 0 1 − 1 1 1 0 ) A = \begin{pmatrix} 0 & 1 & 1 & -1 \\ 1 & 0 & -1 & 1 \\ 1 & -1 & 0 & 1 \\ -1 & 1 & 1 & 0 \\ \end{pmatrix} A= 0111101111011110

求一正交矩阵 P P P,使 P T A P P^{T}AP PTAP 成对角形。

解:
∣ A − λ E ∣ = ∣ − λ 1 1 − 1 1 − λ − 1 1 1 − 1 − λ 1 − 1 1 1 − λ ∣ = ∣ 1 − λ 1 − λ 1 − λ 1 − λ 1 − λ − 1 1 1 − 1 − λ 1 − 1 1 1 − λ ∣ = ( 1 − λ ) ∣ 1 1 1 1 1 − λ − 1 1 1 − 1 − λ 1 − 1 1 1 − λ ∣ = ( 1 − λ ) ∣ 1 1 1 1 0 − λ − 1 − 2 0 0 − 2 − λ − 1 0 0 2 2 1 − λ ∣ = ( 1 − λ ) 2 ( λ 2 + 2 λ − 3 ) = ( λ − 1 ) 3 ( λ + 3 ) \begin{aligned} & |A-\lambda E| ~=~ \begin{vmatrix}-\lambda & 1 & 1 & -1 \\ 1 & -\lambda & -1 & 1 \\ 1 & -1 & -\lambda & 1 \\ -1 & 1 & 1 & -\lambda \\ \end{vmatrix} ~=~ \begin{vmatrix} 1-\lambda & 1-\lambda & 1-\lambda & 1-\lambda \\ 1 & -\lambda & -1 & 1 \\ 1 & -1 & -\lambda & 1 \\ -1 & 1 & 1 & -\lambda \\ \end{vmatrix} \\\\\\ & =~ (1-\lambda) \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & -\lambda & -1 & 1 \\ 1 & -1 & -\lambda & 1 \\ -1 & 1 & 1 & -\lambda \\ \end{vmatrix} ~=~ (1-\lambda) \begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & -\lambda-1 & -2 & 0 \\ 0 & -2 & -\lambda-1 & 0 \\ 0 & 2 & 2 & 1-\lambda \\ \end{vmatrix} \\\\\\\ & =~ (1-\lambda)^2(\lambda^2+2\lambda-3) = (\lambda-1)^3(\lambda+3) \end{aligned}  AλE =  λ1111λ1111λ1111λ  =  1λ1111λλ111λ1λ11λ11λ = (1λ) 11111λ1111λ1111λ  = (1λ) 10001λ12212λ121001λ = (1λ)2(λ2+2λ3)=(λ1)3(λ+3)

求得 λ 1 = λ 2 = λ 3 = 1 , λ 4 = − 3 \large \lambda_1=\lambda_2=\lambda_3=1, \lambda_4=-3 λ1=λ2=λ3=1,λ4=3

λ 1 = 1 \lambda_1=1 λ1=1 (3重)带入齐次方程组,得
A − E = ( − 1 1 1 − 1 1 − 1 − 1 1 1 − 1 − 1 1 − 1 1 1 − 1 ) = ( 1 − 1 − 1 1 0 0 0 0 0 0 0 0 0 0 0 0 ) A - E = \begin{pmatrix}-1 & 1 & 1 & -1 \\ 1 & -1 & -1 & 1 \\ 1 & -1 & -1 & 1 \\-1 & 1 & 1 & -1 \\ \end{pmatrix}= \begin{pmatrix} 1 & -1 & -1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{pmatrix} AE= 1111111111111111 = 1000100010001000 { x 1 = x 2 + x 3 − x 4 x 2 = x 2 x 3 = x 3 x 4 = x 4 = > x 2 ( 1 1 0 0 ) + x 3 ( 1 0 1 0 ) + x 4 ( − 1 0 0 1 ) \begin{cases} x_1 = x_2 + x_3 - x_4 \\ x_2 = x_2 \\ x_3 = ~~~~~~~~~x_3 \\ x_4 = ~~~~~~~~~~~~~~~~~~x_4 \\ \end{cases} => x_2 \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}+ x_3 \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix} x1=x2+x3x4x2=x2x3=         x3x4=                  x4=>x2 1100 +x3 1010 +x4 1001

得出基础解系 ζ 1 , ζ 2 , ζ 3 \zeta_1,\zeta_2,\zeta_3 ζ1,ζ2,ζ3
ζ 1 = ( 1 1 0 0 ) , ζ 2 = ( 1 0 1 0 ) , ζ 3 = ( − 1 0 0 1 ) \zeta_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \zeta_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \zeta_3 = \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix} ζ1= 1100 ,ζ2= 1010 ,ζ3= 1001

ζ 1 , ζ 2 , ζ 3 \zeta_1,\zeta_2,\zeta_3 ζ1,ζ2,ζ3 正交化 : 取 η 1 = ζ 1 \eta_1 = \zeta_1 η1=ζ1
η 2 = ζ 2 − [ η 1 , ζ 2 ] ∣ ∣ η 1 ∣ ∣ η 1 = ( 1 0 1 0 ) − 1 2 ( 1 1 0 0 ) = 1 2 ( 1 − 1 2 0 ) η 3 = ζ 3 − [ η 3 , ζ 1 ] ∣ ∣ η 1 ∣ ∣ η 1 − [ η 3 , ζ 2 ] ∣ ∣ η 2 ∣ ∣ η 2 = ( − 1 0 0 1 ) + 1 2 ( 1 1 0 0 ) + 1 6 ( 1 − 1 2 0 ) = 1 3 ( − 1 1 1 3 ) \begin{aligned} & \eta_2 = \zeta_2 - \frac{[\eta_1,\zeta_2]}{||\eta_1||}\eta_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}- \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}= \frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ 2 \\ 0 \end{pmatrix} \\ & \eta_3 = \zeta_3 - \frac{[\eta_3,\zeta_1]}{||\eta_1||}\eta_1- \frac{[\eta_3,\zeta_2]}{||\eta_2||}\eta_2 = \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \frac{1}{6} \begin{pmatrix} 1 \\ -1 \\ 2 \\ 0 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} -1 \\ 1 \\ 1 \\ 3 \end{pmatrix} \end{aligned} η2=ζ2∣∣η1∣∣[η1,ζ2]η1= 1010 21 1100 =21 1120 η3=ζ3∣∣η1∣∣[η3,ζ1]η1∣∣η2∣∣[η3,ζ2]η2= 1001 +21 1100 +61 1120 =31 1113

η 1 , η 2 , η 3 \eta_1,\eta_2,\eta_3 η1,η2,η3 单位化求得 p 1 , p 2 , p 3 p_1,p_2,p_3 p1,p2,p3
p 1 = 1 2 ( 1 , 1 , 0 , 0 ) T p 2 = 1 6 ( 1 , − 1 , 2 , 0 ) T p 3 = 1 12 ( − 1 , 1 , 1 , 3 ) T \begin{aligned} & p_1 = \frac{1}{\sqrt2} (1,1,0,0)^T \\ & p_2 = \frac{1}{\sqrt6} (1,-1,2,0)^T \\ & p_3 = \frac{1}{\sqrt{12}} (-1,1,1,3)^T \end{aligned} p1=2 1(1,1,0,0)Tp2=6 1(1,1,2,0)Tp3=12 1(1,1,1,3)T

λ 4 = − 3 \lambda_4=-3 λ4=3 带入齐次方程组,得
A + 3 E = ( 3 1 1 − 1 1 3 − 1 1 1 − 1 3 1 − 1 1 1 3 ) = ( 1 0 0 − 1 0 1 0 1 0 0 1 1 0 0 0 0 ) A + 3E = \begin{pmatrix} 3 & 1 & 1 & -1 \\ 1 & 3 & -1 & 1 \\ 1 & -1 & 3 & 1 \\-1 & 1 & 1 & 3 \\ \end{pmatrix}= \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ \end{pmatrix} A+3E= 3111131111311113 = 1000010000101110 { x 1 = x 4 x 2 = − x 4 x 3 = − x 4 x 4 = x 4 = > x 4 ( 1 − 1 − 1 1 ) \begin{cases} x_1 = x_4 \\ x_2 = -x_4 \\ x_3 = -x_4 \\ x_4 = x_4 \\ \end{cases} => x_4 \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix} x1=x4x2=x4x3=x4x4=x4=>x4 1111

得出基础解系 ζ 4 \zeta_4 ζ4
ζ 4 = ( 1 − 1 − 1 1 ) \zeta_4 = \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix} ζ4= 1111

ζ 4 \zeta_4 ζ4 单位化,得 p 4 p_4 p4
p 4 = 1 2 ( 1 , − 1 , − 1 , 1 ) T p_4 = \frac{1}{2} (1,-1,-1,1)^T p4=21(1,1,1,1)T

p 1 , p 2 , p 3 , p 4 p_1,p_2,p_3,p_4 p1,p2,p3,p4 构成正交矩阵 P P P
P = ( p 1 , p 2 , p 3 , p 4 ) = ( 1 2 1 6 − 1 12 1 2 1 2 − 1 6 1 12 − 1 2 0 2 6 1 12 − 1 2 0 0 3 12 1 2 ) P = (p_1,p_2,p_3,p_4) = \begin{pmatrix} \frac{1}{\sqrt2} & \frac{1}{\sqrt6} & -\frac{1}{\sqrt{12}} & \frac{1}{2} \\ \frac{1}{\sqrt2} & -\frac{1}{\sqrt6} & \frac{1}{\sqrt{12}} & -\frac{1}{2} \\ 0 & \frac{2}{\sqrt6} & \frac{1}{\sqrt{12}} & -\frac{1}{2} \\ 0 & 0 & \frac{3}{\sqrt{12}} & \frac{1}{2} \\ \end{pmatrix} P=(p1,p2,p3,p4)= 2 12 1006 16 16 2012 112 112 112 321212121


P T A P = ( 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 − 3 ) P^{T}AP = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -3 \\ \end{pmatrix} PTAP= 1000010000100003

这篇关于【最优化方法】对称矩阵的对角化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/562362

相关文章

macOS无效Launchpad图标轻松删除的4 种实用方法

《macOS无效Launchpad图标轻松删除的4种实用方法》mac中不在appstore上下载的应用经常在删除后它的图标还残留在launchpad中,并且长按图标也不会出现删除符号,下面解决这个问... 在 MACOS 上,Launchpad(也就是「启动台」)是一个便捷的 App 启动工具。但有时候,应

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

mysql出现ERROR 2003 (HY000): Can‘t connect to MySQL server on ‘localhost‘ (10061)的解决方法

《mysql出现ERROR2003(HY000):Can‘tconnecttoMySQLserveron‘localhost‘(10061)的解决方法》本文主要介绍了mysql出现... 目录前言:第一步:第二步:第三步:总结:前言:当你想通过命令窗口想打开mysql时候发现提http://www.cpp

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

MySQL INSERT语句实现当记录不存在时插入的几种方法

《MySQLINSERT语句实现当记录不存在时插入的几种方法》MySQL的INSERT语句是用于向数据库表中插入新记录的关键命令,下面:本文主要介绍MySQLINSERT语句实现当记录不存在时... 目录使用 INSERT IGNORE使用 ON DUPLICATE KEY UPDATE使用 REPLACE

CentOS 7部署主域名服务器 DNS的方法

《CentOS7部署主域名服务器DNS的方法》文章详细介绍了在CentOS7上部署主域名服务器DNS的步骤,包括安装BIND服务、配置DNS服务、添加域名区域、创建区域文件、配置反向解析、检查配置... 目录1. 安装 BIND 服务和工具2.  配置 BIND 服务3 . 添加你的域名区域配置4.创建区域

mss32.dll文件丢失怎么办? 电脑提示mss32.dll丢失的多种修复方法

《mss32.dll文件丢失怎么办?电脑提示mss32.dll丢失的多种修复方法》最近,很多电脑用户可能遇到了mss32.dll文件丢失的问题,导致一些应用程序无法正常启动,那么,如何修复这个问题呢... 在电脑常年累月的使用过程中,偶尔会遇到一些问题令人头疼。像是某个程序尝试运行时,系统突然弹出一个错误提

电脑提示找不到openal32.dll文件怎么办? openal32.dll丢失完美修复方法

《电脑提示找不到openal32.dll文件怎么办?openal32.dll丢失完美修复方法》openal32.dll是一种重要的系统文件,当它丢失时,会给我们的电脑带来很大的困扰,很多人都曾经遇到... 在使用电脑过程中,我们常常会遇到一些.dll文件丢失的问题,而openal32.dll的丢失是其中比较

python中字符串拼接的几种方法及优缺点对比详解

《python中字符串拼接的几种方法及优缺点对比详解》在Python中,字符串拼接是常见的操作,Python提供了多种方法来拼接字符串,每种方法有其优缺点和适用场景,以下是几种常见的字符串拼接方法,需... 目录1. 使用 + 运算符示例:优缺点:2. 使用&nbsjsp;join() 方法示例:优缺点:3