【最优化方法】对称矩阵的对角化

2024-01-02 11:52

本文主要是介绍【最优化方法】对称矩阵的对角化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 正交化方法
    • 示例
  • 矩阵正交化

正交化方法

R n R^n Rn 中线性无关组 a 1 , a 2 , a 3 , … , a n a_1,a_2,a_3,\dots,a_n a1,a2,a3,,an,令
β 1 = α 1 β 2 = α 2 − [ α 2 β 1 ] ∣ ∣ β 1 ∣ ∣ β 1 β 3 = α 3 − [ α 3 β 1 ] ∣ ∣ β 1 ∣ ∣ β 1 − [ α 3 β 2 ] ∣ ∣ β 2 ∣ ∣ β 2 β n = α 3 − [ α n β 1 ] ∣ ∣ β 1 ∣ ∣ β 1 − ⋯ − [ α n β n − 1 ] ∣ ∣ β n − 1 ∣ ∣ β n − 1 \begin{aligned} & \beta_1 = \alpha_1 \\ & \beta_2 = \alpha_2 - {\frac{[\alpha_2\beta_1]}{||\beta_1||}} \beta_1 \\ & \beta_3 = \alpha_3 - {\frac{[\alpha_3\beta_1]}{||\beta_1||}} \beta_1 - {\frac{[\alpha_3\beta_2]}{||\beta_2||}} \beta_2 \\ & \beta_n = \alpha_3 - {\frac{[\alpha_n\beta_1]}{||\beta_1||}} \beta_1 - \cdots - {\frac{[\alpha_n\beta_{n-1}]}{||\beta_{n-1}||}} \beta_{n-1} \end{aligned} β1=α1β2=α2∣∣β1∣∣[α2β1]β1β3=α3∣∣β1∣∣[α3β1]β1∣∣β2∣∣[α3β2]β2βn=α3∣∣β1∣∣[αnβ1]β1∣∣βn1∣∣[αnβn1]βn1

该方法称为施密特正交化(Gram–Schmidt process

[ x , y ] [x, y] [x,y] 为向量的内积, ∣ ∣ x ∣ ∣ = [ x , x ] ||x||=[x,x] ∣∣x∣∣=[x,x]
[ x , y ] = x 1 y 1 + x 2 y 2 + ⋯ + x n y n [x, y] = x_1y_1 + x_2y_2 + \cdots + x_ny_n [x,y]=x1y1+x2y2++xnyn

示例

将向量组
α 1 = ( 1 , 1 , 0 , 0 ) T , α 2 = ( 1 , 0 , 1 , 0 ) T α 3 = ( − 1 , 0 , 0 , 1 ) T , α 4 = ( 1 , − 1 , − 1 , 1 ) T \begin{align} & \alpha_1=(1,1,0,0)^T,\alpha_2=(1,0,1,0)^T \\ & \alpha_3=(-1,0,0,1)^T,\alpha_4=(1,-1,-1,1)^T \\ \end{align} α1=(1,1,0,0)T,α2=(1,0,1,0)Tα3=(1,0,0,1)T,α4=(1,1,1,1)T

标准正交化

解: 先正交化
β 1 = ( 1 , 1 , 0 , 0 ) T β 2 = ( 1 , 0 , 1 , 0 ) T − 1 2 ( 1 , 1 , 0 , 0 ) T = 1 2 ( 1 , − 1 , 2 , 0 ) T β 3 = ( − 1 , 0 , 0 , 1 ) T + 1 2 ( 1 , 1 , 0 , 0 ) T + 1 6 ( 1 , − 1 , 2 , 0 ) T = 1 3 ( − 1 , 1 , 1 , 3 ) T β 4 = ( 1 , − 1 , − 1 , 1 ) T − 0 − 0 − 0 = ( 1 , − 1 , − 1 , 1 ) T \begin{aligned} & \beta_1 =(1,1,0,0)^T \\ & \beta_2 = (1,0,1,0)^T-\frac{1}{2}(1,1,0,0)^T = \frac{1}{2}(1,-1,2,0)^T \\ & \beta_3 = (-1,0,0,1)^T + \frac{1}{2}(1,1,0,0)^T + \frac{1}{6}(1,-1,2,0)^T = \frac{1}{3}(-1,1,1,3)^T \\ & \beta_4 = (1,-1,-1,1)^T-0-0-0=(1,-1,-1,1)^T \end{aligned} β1=(1,1,0,0)Tβ2=(1,0,1,0)T21(1,1,0,0)T=21(1,1,2,0)Tβ3=(1,0,0,1)T+21(1,1,0,0)T+61(1,1,2,0)T=31(1,1,1,3)Tβ4=(1,1,1,1)T000=(1,1,1,1)T

再标准化
β 1 = 1 2 ( 1 , 1 , 0 , 0 ) T β 2 = 1 6 ( 1 , − 1 , 2 , 0 ) T β 3 = 1 2 3 ( − 1 , 1 , 1 , 3 ) T β 4 = 1 2 ( 1 , − 1 , − 1 , 1 ) T \begin{aligned} & \beta_1 = \frac{1}{\sqrt2} (1,1,0,0)^T \\ & \beta_2 = \frac{1}{\sqrt6} (1,-1,2,0)^T \\ & \beta_3 = \frac{1}{2\sqrt3} (-1,1,1,3)^T \\ & \beta_4 = \frac{1}{2} (1,-1,-1,1)^T \end{aligned} β1=2 1(1,1,0,0)Tβ2=6 1(1,1,2,0)Tβ3=23 1(1,1,1,3)Tβ4=21(1,1,1,1)T

矩阵正交化

A = ( 0 1 1 − 1 1 0 − 1 1 1 − 1 0 1 − 1 1 1 0 ) A = \begin{pmatrix} 0 & 1 & 1 & -1 \\ 1 & 0 & -1 & 1 \\ 1 & -1 & 0 & 1 \\ -1 & 1 & 1 & 0 \\ \end{pmatrix} A= 0111101111011110

求一正交矩阵 P P P,使 P T A P P^{T}AP PTAP 成对角形。

解:
∣ A − λ E ∣ = ∣ − λ 1 1 − 1 1 − λ − 1 1 1 − 1 − λ 1 − 1 1 1 − λ ∣ = ∣ 1 − λ 1 − λ 1 − λ 1 − λ 1 − λ − 1 1 1 − 1 − λ 1 − 1 1 1 − λ ∣ = ( 1 − λ ) ∣ 1 1 1 1 1 − λ − 1 1 1 − 1 − λ 1 − 1 1 1 − λ ∣ = ( 1 − λ ) ∣ 1 1 1 1 0 − λ − 1 − 2 0 0 − 2 − λ − 1 0 0 2 2 1 − λ ∣ = ( 1 − λ ) 2 ( λ 2 + 2 λ − 3 ) = ( λ − 1 ) 3 ( λ + 3 ) \begin{aligned} & |A-\lambda E| ~=~ \begin{vmatrix}-\lambda & 1 & 1 & -1 \\ 1 & -\lambda & -1 & 1 \\ 1 & -1 & -\lambda & 1 \\ -1 & 1 & 1 & -\lambda \\ \end{vmatrix} ~=~ \begin{vmatrix} 1-\lambda & 1-\lambda & 1-\lambda & 1-\lambda \\ 1 & -\lambda & -1 & 1 \\ 1 & -1 & -\lambda & 1 \\ -1 & 1 & 1 & -\lambda \\ \end{vmatrix} \\\\\\ & =~ (1-\lambda) \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & -\lambda & -1 & 1 \\ 1 & -1 & -\lambda & 1 \\ -1 & 1 & 1 & -\lambda \\ \end{vmatrix} ~=~ (1-\lambda) \begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & -\lambda-1 & -2 & 0 \\ 0 & -2 & -\lambda-1 & 0 \\ 0 & 2 & 2 & 1-\lambda \\ \end{vmatrix} \\\\\\\ & =~ (1-\lambda)^2(\lambda^2+2\lambda-3) = (\lambda-1)^3(\lambda+3) \end{aligned}  AλE =  λ1111λ1111λ1111λ  =  1λ1111λλ111λ1λ11λ11λ = (1λ) 11111λ1111λ1111λ  = (1λ) 10001λ12212λ121001λ = (1λ)2(λ2+2λ3)=(λ1)3(λ+3)

求得 λ 1 = λ 2 = λ 3 = 1 , λ 4 = − 3 \large \lambda_1=\lambda_2=\lambda_3=1, \lambda_4=-3 λ1=λ2=λ3=1,λ4=3

λ 1 = 1 \lambda_1=1 λ1=1 (3重)带入齐次方程组,得
A − E = ( − 1 1 1 − 1 1 − 1 − 1 1 1 − 1 − 1 1 − 1 1 1 − 1 ) = ( 1 − 1 − 1 1 0 0 0 0 0 0 0 0 0 0 0 0 ) A - E = \begin{pmatrix}-1 & 1 & 1 & -1 \\ 1 & -1 & -1 & 1 \\ 1 & -1 & -1 & 1 \\-1 & 1 & 1 & -1 \\ \end{pmatrix}= \begin{pmatrix} 1 & -1 & -1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{pmatrix} AE= 1111111111111111 = 1000100010001000 { x 1 = x 2 + x 3 − x 4 x 2 = x 2 x 3 = x 3 x 4 = x 4 = > x 2 ( 1 1 0 0 ) + x 3 ( 1 0 1 0 ) + x 4 ( − 1 0 0 1 ) \begin{cases} x_1 = x_2 + x_3 - x_4 \\ x_2 = x_2 \\ x_3 = ~~~~~~~~~x_3 \\ x_4 = ~~~~~~~~~~~~~~~~~~x_4 \\ \end{cases} => x_2 \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}+ x_3 \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix} x1=x2+x3x4x2=x2x3=         x3x4=                  x4=>x2 1100 +x3 1010 +x4 1001

得出基础解系 ζ 1 , ζ 2 , ζ 3 \zeta_1,\zeta_2,\zeta_3 ζ1,ζ2,ζ3
ζ 1 = ( 1 1 0 0 ) , ζ 2 = ( 1 0 1 0 ) , ζ 3 = ( − 1 0 0 1 ) \zeta_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \zeta_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \zeta_3 = \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix} ζ1= 1100 ,ζ2= 1010 ,ζ3= 1001

ζ 1 , ζ 2 , ζ 3 \zeta_1,\zeta_2,\zeta_3 ζ1,ζ2,ζ3 正交化 : 取 η 1 = ζ 1 \eta_1 = \zeta_1 η1=ζ1
η 2 = ζ 2 − [ η 1 , ζ 2 ] ∣ ∣ η 1 ∣ ∣ η 1 = ( 1 0 1 0 ) − 1 2 ( 1 1 0 0 ) = 1 2 ( 1 − 1 2 0 ) η 3 = ζ 3 − [ η 3 , ζ 1 ] ∣ ∣ η 1 ∣ ∣ η 1 − [ η 3 , ζ 2 ] ∣ ∣ η 2 ∣ ∣ η 2 = ( − 1 0 0 1 ) + 1 2 ( 1 1 0 0 ) + 1 6 ( 1 − 1 2 0 ) = 1 3 ( − 1 1 1 3 ) \begin{aligned} & \eta_2 = \zeta_2 - \frac{[\eta_1,\zeta_2]}{||\eta_1||}\eta_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}- \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}= \frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ 2 \\ 0 \end{pmatrix} \\ & \eta_3 = \zeta_3 - \frac{[\eta_3,\zeta_1]}{||\eta_1||}\eta_1- \frac{[\eta_3,\zeta_2]}{||\eta_2||}\eta_2 = \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \frac{1}{6} \begin{pmatrix} 1 \\ -1 \\ 2 \\ 0 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} -1 \\ 1 \\ 1 \\ 3 \end{pmatrix} \end{aligned} η2=ζ2∣∣η1∣∣[η1,ζ2]η1= 1010 21 1100 =21 1120 η3=ζ3∣∣η1∣∣[η3,ζ1]η1∣∣η2∣∣[η3,ζ2]η2= 1001 +21 1100 +61 1120 =31 1113

η 1 , η 2 , η 3 \eta_1,\eta_2,\eta_3 η1,η2,η3 单位化求得 p 1 , p 2 , p 3 p_1,p_2,p_3 p1,p2,p3
p 1 = 1 2 ( 1 , 1 , 0 , 0 ) T p 2 = 1 6 ( 1 , − 1 , 2 , 0 ) T p 3 = 1 12 ( − 1 , 1 , 1 , 3 ) T \begin{aligned} & p_1 = \frac{1}{\sqrt2} (1,1,0,0)^T \\ & p_2 = \frac{1}{\sqrt6} (1,-1,2,0)^T \\ & p_3 = \frac{1}{\sqrt{12}} (-1,1,1,3)^T \end{aligned} p1=2 1(1,1,0,0)Tp2=6 1(1,1,2,0)Tp3=12 1(1,1,1,3)T

λ 4 = − 3 \lambda_4=-3 λ4=3 带入齐次方程组,得
A + 3 E = ( 3 1 1 − 1 1 3 − 1 1 1 − 1 3 1 − 1 1 1 3 ) = ( 1 0 0 − 1 0 1 0 1 0 0 1 1 0 0 0 0 ) A + 3E = \begin{pmatrix} 3 & 1 & 1 & -1 \\ 1 & 3 & -1 & 1 \\ 1 & -1 & 3 & 1 \\-1 & 1 & 1 & 3 \\ \end{pmatrix}= \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ \end{pmatrix} A+3E= 3111131111311113 = 1000010000101110 { x 1 = x 4 x 2 = − x 4 x 3 = − x 4 x 4 = x 4 = > x 4 ( 1 − 1 − 1 1 ) \begin{cases} x_1 = x_4 \\ x_2 = -x_4 \\ x_3 = -x_4 \\ x_4 = x_4 \\ \end{cases} => x_4 \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix} x1=x4x2=x4x3=x4x4=x4=>x4 1111

得出基础解系 ζ 4 \zeta_4 ζ4
ζ 4 = ( 1 − 1 − 1 1 ) \zeta_4 = \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix} ζ4= 1111

ζ 4 \zeta_4 ζ4 单位化,得 p 4 p_4 p4
p 4 = 1 2 ( 1 , − 1 , − 1 , 1 ) T p_4 = \frac{1}{2} (1,-1,-1,1)^T p4=21(1,1,1,1)T

p 1 , p 2 , p 3 , p 4 p_1,p_2,p_3,p_4 p1,p2,p3,p4 构成正交矩阵 P P P
P = ( p 1 , p 2 , p 3 , p 4 ) = ( 1 2 1 6 − 1 12 1 2 1 2 − 1 6 1 12 − 1 2 0 2 6 1 12 − 1 2 0 0 3 12 1 2 ) P = (p_1,p_2,p_3,p_4) = \begin{pmatrix} \frac{1}{\sqrt2} & \frac{1}{\sqrt6} & -\frac{1}{\sqrt{12}} & \frac{1}{2} \\ \frac{1}{\sqrt2} & -\frac{1}{\sqrt6} & \frac{1}{\sqrt{12}} & -\frac{1}{2} \\ 0 & \frac{2}{\sqrt6} & \frac{1}{\sqrt{12}} & -\frac{1}{2} \\ 0 & 0 & \frac{3}{\sqrt{12}} & \frac{1}{2} \\ \end{pmatrix} P=(p1,p2,p3,p4)= 2 12 1006 16 16 2012 112 112 112 321212121


P T A P = ( 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 − 3 ) P^{T}AP = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -3 \\ \end{pmatrix} PTAP= 1000010000100003

这篇关于【最优化方法】对称矩阵的对角化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/562362

相关文章

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施:

webm怎么转换成mp4?这几种方法超多人在用!

webm怎么转换成mp4?WebM作为一种新兴的视频编码格式,近年来逐渐进入大众视野,其背后承载着诸多优势,但同时也伴随着不容忽视的局限性,首要挑战在于其兼容性边界,尽管WebM已广泛适应于众多网站与软件平台,但在特定应用环境或老旧设备上,其兼容难题依旧凸显,为用户体验带来不便,再者,WebM格式的非普适性也体现在编辑流程上,由于它并非行业内的通用标准,编辑过程中可能会遭遇格式不兼容的障碍,导致操

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

【北交大信息所AI-Max2】使用方法

BJTU信息所集群AI_MAX2使用方法 使用的前提是预约到相应的算力卡,拥有登录权限的账号密码,一般为导师组共用一个。 有浏览器、ssh工具就可以。 1.新建集群Terminal 浏览器登陆10.126.62.75 (如果是1集群把75改成66) 交互式开发 执行器选Terminal 密码随便设一个(需记住) 工作空间:私有数据、全部文件 加速器选GeForce_RTX_2080_Ti

hdu 4565 推倒公式+矩阵快速幂

题意 求下式的值: Sn=⌈ (a+b√)n⌉%m S_n = \lceil\ (a + \sqrt{b}) ^ n \rceil\% m 其中: 0<a,m<215 0< a, m < 2^{15} 0<b,n<231 0 < b, n < 2^{31} (a−1)2<b<a2 (a-1)^2< b < a^2 解析 令: An=(a+b√)n A_n = (a +

【VUE】跨域问题的概念,以及解决方法。

目录 1.跨域概念 2.解决方法 2.1 配置网络请求代理 2.2 使用@CrossOrigin 注解 2.3 通过配置文件实现跨域 2.4 添加 CorsWebFilter 来解决跨域问题 1.跨域概念 跨域问题是由于浏览器实施了同源策略,该策略要求请求的域名、协议和端口必须与提供资源的服务相同。如果不相同,则需要服务器显式地允许这种跨域请求。一般在springbo

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出 在数字化时代,文本到语音(Text-to-Speech, TTS)技术已成为人机交互的关键桥梁,无论是为视障人士提供辅助阅读,还是为智能助手注入声音的灵魂,TTS 技术都扮演着至关重要的角色。从最初的拼接式方法到参数化技术,再到现今的深度学习解决方案,TTS 技术经历了一段长足的进步。这篇文章将带您穿越时

hdu 6198 dfs枚举找规律+矩阵乘法

number number number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Problem Description We define a sequence  F : ⋅   F0=0,F1=1 ; ⋅   Fn=Fn

模版方法模式template method

学习笔记,原文链接 https://refactoringguru.cn/design-patterns/template-method 超类中定义了一个算法的框架, 允许子类在不修改结构的情况下重写算法的特定步骤。 上层接口有默认实现的方法和子类需要自己实现的方法