图像抠图的closed form算法(A Closed-Form Solution to Natural Image Matting)

2024-01-01 20:30

本文主要是介绍图像抠图的closed form算法(A Closed-Form Solution to Natural Image Matting),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

关于图像抠图算法,Levin等人在2007年基于图像的局部光滑假设,利用代数的方法推导出了alpha matte矩阵闭合解的形式。原文名称是”A Closed Form Solution to Natural Image Matting”。
在抠图问题中,假设第i个像素点的值 Ii I i 是由前景点 Fi F i 和背景点 Bi B i 按下式加权合成的:

Ii=αiFi+(1αi)Bi1 I i = α i F i + ( 1 − α i ) B i 式 1

其中 αi α i 称为前景透明度,也就是要求解的”alpha matte”矩阵,指定了原图中对应像素点的类型——属于背景( αi=0 α i = 0 )、前景( αi=1 α i = 1 )或是未知(0< αi α i <1)。鉴于前景图F和背景图B都是未知,要想求解出alpha矩阵,需要其他条件——用户输入提示和图像分布假设。

用户输入方式

不同的抠图系统所接受的用户输入一般有两种形式——trimap或scribbles。两种方式的目的都是要给出alpha matte矩阵的初始估计。trimap的方式需要用户指出所有的混合像素点,哪怕以掺入大量的前景点和背景点为代价,如(a)所示;而scribbles的方法只需用户在确定的前景和背景区域分别画出一些条状区域即可,如下图(b)所示,在转化成alpha matte矩阵时,α的值同样也是前景处为1,背景处为0,scribble的交互方式显然比trimap的方式要简单,尤其当对于图像前景轮廓比较复杂的时候。
这里写图片描述

灰度图

为了使式1可以被求解,必须对F和B施加一些假设,该算法即假定F和B是局部光滑的,也就是在一个小的图像窗口w中(如3x3),F和B固定不变,那么式(1)就可以写成:

αiαIi+b,iw2 α i ≈ α I i + b , ∀ i ∈ w 式 2

也就说α与 Ii I i 是线性相关(α= 1FB 1 F − B , b= BFB − B F − B 是常数)。那么就可以简单的定义要优化的目标函数为α的估计值与实际值的差:
这里写图片描述 式3
从表达式可以看出,子窗口存在大量重叠,正是该性质使得像素信息可以进行传播。该算法的巧妙之处在于通过一些代数推导,可以将a和b从式3中消去,转换为只有一个变量α的优化问题。
这里写图片描述 式4
其中,α是Nx1维的列向量(N是像素总数),L是一个NxN的对称正定矩阵:
这里写图片描述
只有当i=j时, δij δ i j 才等于1,其他情况下为0, uk u k σ2k σ k 2 分别是子窗口内像素的均值和方差。
在抠图算法中,L是一个很重要的矩阵,人们称之为matting laplace矩阵,它除了是一个对称的正定矩阵之外,还是一个稀疏矩阵,只有满足|i−j|<| wk w k |−1的像素处L才是非0。所以,虽然L的维度很高,但仍可以采用高效的方式求解,尤其是利用MATLAB自带的一些稀疏矩阵函数。
推导过程也比较简单,主要就是先将式3平方和累加的形式转换为列向量的模,恰好是一个最小二乘法的形式,再根据最小二乘法解的公式求出使得J最小时a,b的值,即可消去a,b,只留下α。在抠图时,除了希望得到alpha matte矩阵,一般还希望可以得到对应的前景图和背景图的值,所以在这里详细推导一遍,同时给出a,b与α之间的关系。
用列向量模的形式表示式3:
这里写图片描述
其中,
这里写图片描述
这里写图片描述
这是一个典型的最小二乘问题,求解结果就是:
这里写图片描述
带入J(α)的表达式中即可整理出L。

彩色图

如果是rgb图,因为有了3个通道,所以需要对每个通道重复上述过程,但原文却采取了另外一种假设模型——color line model。与灰度图的局部光滑假设不同,color line 模型假定子窗口内的前景和背景像素值不是固定的,而是位于一条直线上:
这里写图片描述
将此假设带入到式1中,经过推导(原文中给出了证明),可以得到彩色图像的线性模型:
这里写图片描述
ac a c 和b是仅与F,B,I有关的变量。将式5带入灰度图像的推导过程,同样可以将目标函数化简成式4,只是L略有不同:
这里写图片描述
此时 k ∑ k 变成了窗口内所有像素的协方差矩阵, uk u k 是三维列向量,分别对应三个通道的像素均值, I3 I 3 是3x3的单位阵。L又被称为matting laplace矩阵。

用户输入约束下的优化问题

施加了像素分布的假设后,还需要考虑用户指定的前景和背景的先验分布。当用户按图(b)的方式在原始图像上画出一系列区域时,α中相应像素点被赋值1(前景)或0(背景),那么式4的优化问题就变成了:
这里写图片描述
S是用户所指定的像素点的集合, si s i 取0或1。
为求解式5,首先对L中的像素位置进行重组,再次强调之前所说的,L是对称矩阵:
这里写图片描述
LM L M 是已知像素点的集合, LU L U 是未知像素点的集合,也就是将图像中所有标记出的像素排在前面,要求解的未知像素排在后面,当然为保证变换前后等式关系一致,α也需要相应调整:
这里写图片描述
带入式4:
这里写图片描述
要求J(α)的最小值,需要进行矩阵求导,矩阵求导的通用公式如下:
这里写图片描述
这里写图片描述
因为 αM α M 已知,所以上式中的第一项导数为0:
这里写图片描述
LU L U 是对称的,所以最后求出的解为:
这里写图片描述

算法运行效果

原图和用户输入的scribble图如下:
这里写图片描述
程序输出的结果如下:
这里写图片描述
可以看出,尽管该算法比较简单,但即使是与一些采用繁复的迭代的算法相比,其效果也是不错的。
当然,最终结果的好坏还是取决于两个因素——图像是否满足color line model的假设以及用户输入的先验信息,据原文的说法,一般的自然图像都可以较好的满足color line model。

文章来源

转载地址:https://blog.csdn.net/edesignerj/article/details/53349663

这篇关于图像抠图的closed form算法(A Closed-Form Solution to Natural Image Matting)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/560423

相关文章

基于WinForm+Halcon实现图像缩放与交互功能

《基于WinForm+Halcon实现图像缩放与交互功能》本文主要讲述在WinForm中结合Halcon实现图像缩放、平移及实时显示灰度值等交互功能,包括初始化窗口的不同方式,以及通过特定事件添加相应... 目录前言初始化窗口添加图像缩放功能添加图像平移功能添加实时显示灰度值功能示例代码总结最后前言本文将

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费