卡尔曼滤波(KF)和增广卡尔曼滤波(EKF)实现

2024-01-01 17:52

本文主要是介绍卡尔曼滤波(KF)和增广卡尔曼滤波(EKF)实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

卡尔曼滤波(KF)

python实现:

import numpy as npF = np.array([[1, 1], [0, 1]])  # 状态转移矩阵 X(k+1)=[[1, Δt], [0, 1]]*X(k) Δt=1
Q = 0.1 * np.eye(2, 2)          # 过程噪声协方差矩阵
R = 0.1 * np.eye(2, 2)          # 观测噪声协方差矩阵            
H = np.eye(2, 2)                # 状态观测矩阵if __name__ == "__main__":X0 = np.array([[0], [1]])       # 初始位置与速度 X(k)=[X, X']X_true = np.array(X0)           # 真实状态初始化X_posterior = np.array(X0)      # 上一时刻的最优估计值P_posterior = np.eye(2, 2)      # 继续更新最优解的协方差矩阵for i in range(10):# 生成真实值 w = Q @ np.random.randn(2, 1)  # 生成过程噪声X_true = F @ X_true + w                                                                          # 得到当前时刻实际的速度值和位置值                                       # 生成观测值v = R @ np.random.randn(2, 1)  # 生成观测噪声 Z_measure = H @ X_true + v                                                                       # 生成观测值,H为单位阵# 进行先验估计X_prior = F @ X_posterior                                       # 计算状态估计协方差矩阵PP_prior = F @ P_posterior @ F.T + Q                  # 计算卡尔曼增益K = P_prior @ H.T @ np.linalg.inv(H @ P_prior @ H.T + R)         # 后验估计X_posterior = X_prior + K @ (Z_measure - H @ X_prior)                    # 更新状态估计协方差矩阵P     P_posterior = (np.eye(len(X_posterior)) - K @ H) @ P_prior  print(X_true.T, X_posterior.T)      

C++实现:

#include <iostream>
#include <Eigen/Dense>int main(int argc, char* argv[])
{Eigen::Matrix2f F;F << 1, 1, 0, 1;Eigen::Matrix2f Q = 0.1 * Eigen::Matrix2f::Identity();Eigen::Matrix2f R = 0.1 * Eigen::Matrix2f::Identity();Eigen::Matrix2f H = Eigen::Matrix2f::Identity();Eigen::Vector2f X0;X0 << 0, 1;Eigen::Vector2f X_true = X0;Eigen::Vector2f X_posterior = X0;Eigen::Matrix2f P_posterior = Eigen::Matrix2f::Identity();for (size_t i = 0; i < 10; i++){Eigen::Vector2f w = Q * Eigen::Vector2f::Random();X_true = F * X_true + w;Eigen::Vector2f v = R * Eigen::Vector2f::Random();Eigen::Vector2f Z_measure = H * X_true + v;Eigen::Vector2f X_prior = F * X_posterior;Eigen::Matrix2f P_prior = F * P_posterior * F.transpose() + Q;Eigen::Matrix2f K = P_prior * H.transpose() * (H * P_prior * H.transpose() + R).inverse();X_posterior = X_prior + K * (Z_measure - H * X_prior);P_posterior = (Eigen::Matrix2f::Identity() - K * H) * P_prior;std::cout << "X_true: " << X_true.transpose() << " X_posterior: " << X_posterior.transpose() << std::endl;}return EXIT_SUCCESS;
}

增广卡尔曼滤波(EKF)

python实现:

import numpy as np
from math import sin, cosQ = 0.1 * np.eye(3, 3)
R = 0.1 * np.eye(2, 2)
H = np.array([[1, 0, 0], [0, 1, 0]]) def f(x, u):F = np.eye(3, 3)B = np.array([[0.1 * cos(x[2, 0]), 0], [0.1 * sin(x[2, 0]), 0], [0.0, 0.1]])x = F @ x + B @ u return xif __name__ == '__main__':X0 = np.zeros((3, 1))X_True = X0X_posterior = X0P_posterior = np.eye(3, 3)u = np.array([[10], [1]])for i in range(10):X_True = f(X_True, u)Z_measure = H @ X_True + R @ np.random.randn(2, 1)#  预测X_prior = f(X_posterior, u)v = u[0, 0]F = np.array([[1.0, 0.0, -0.1 * v * sin(X_posterior[2, 0])], [0.0, 1.0, 0.1 * v * cos(X_posterior[2, 0])], [0.0, 0.0, 1.0],])P_prior = F @ P_posterior @ F.T + Q # 预测方差#  更新K = P_prior @ H.T @ np.linalg.inv(H @ P_prior @ H.T + R ) # 卡尔曼增益X_posterior = X_prior + K @ (Z_measure - H @ X_prior) # 最优估计P_posterior = (np.eye(len(X_posterior)) - K @ H) @ P_prior # 最优估计方差print(X_True.T, X_posterior.T)

C++实现:

#include <iostream>
#include <Eigen/Dense>Eigen::VectorXf f(Eigen::VectorXf x, Eigen::VectorXf u)
{Eigen::MatrixXf F = Eigen::MatrixXf::Identity(3, 3);Eigen::MatrixXf B(3, 2);B << 0.1 * cos(x(2)), 0, 0.1* sin(x(2)), 0, 0, 0.1;x = F * x + B * u;return x;
}int main(int argc, char* argv[])
{Eigen::MatrixXf Q = 0.1 * Eigen::MatrixXf::Identity(3, 3);Eigen::MatrixXf R = 0.1 * Eigen::MatrixXf::Identity(2, 2);Eigen::MatrixXf H(2, 3);H << 1, 0, 0, 0, 1, 0;Eigen::VectorXf X0 = Eigen::VectorXf::Zero(3, 1);Eigen::VectorXf X_true = X0;Eigen::VectorXf X_posterior = X0;Eigen::MatrixXf P_posterior = Eigen::MatrixXf::Identity(3, 3);Eigen::VectorXf u(2, 1);u << 10, 1;for (size_t i = 0; i < 10; i++){X_true = f(X_true, u);Eigen::VectorXf Z_measure = H * X_true + R * Eigen::VectorXf::Random(2, 1);Eigen::VectorXf X_prior = f(X_posterior, u);float v = u(0);Eigen::MatrixXf F(3, 3);F << 1.0, 0.0, -0.1 * v * sin(X_posterior(2)), 0.0, 1.0, 0.1* v * cos(X_posterior(2)), 0.0, 0.0, 1.0;Eigen::MatrixXf P_prior = F * P_posterior * F.transpose() + Q;Eigen::MatrixXf K = P_prior * H.transpose() * (H * P_prior * H.transpose() + R).inverse();X_posterior = X_prior + K * (Z_measure - H * X_prior);P_posterior = (Eigen::MatrixXf::Identity(3, 3) - K * H) * P_prior;std::cout << "X_true: " << X_true.transpose() << " X_posterior: " << X_posterior.transpose() << std::endl;}return EXIT_SUCCESS;
}

参考:
【硬核总结】从基础卡尔曼滤波到互补卡尔曼滤波
扩展卡尔曼滤波(EKF)理论讲解与实例(matlab、python和C++代码)
常见滤波汇总(KF、EKF、UKF和PF)

这篇关于卡尔曼滤波(KF)和增广卡尔曼滤波(EKF)实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/560050

相关文章

AJAX请求上传下载进度监控实现方式

《AJAX请求上传下载进度监控实现方式》在日常Web开发中,AJAX(AsynchronousJavaScriptandXML)被广泛用于异步请求数据,而无需刷新整个页面,:本文主要介绍AJAX请... 目录1. 前言2. 基于XMLHttpRequest的进度监控2.1 基础版文件上传监控2.2 增强版多

Redis分片集群的实现

《Redis分片集群的实现》Redis分片集群是一种将Redis数据库分散到多个节点上的方式,以提供更高的性能和可伸缩性,本文主要介绍了Redis分片集群的实现,具有一定的参考价值,感兴趣的可以了解一... 目录1. Redis Cluster的核心概念哈希槽(Hash Slots)主从复制与故障转移2.

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

使用Python实现一键隐藏屏幕并锁定输入

《使用Python实现一键隐藏屏幕并锁定输入》本文主要介绍了使用Python编写一个一键隐藏屏幕并锁定输入的黑科技程序,能够在指定热键触发后立即遮挡屏幕,并禁止一切键盘鼠标输入,这样就再也不用担心自己... 目录1. 概述2. 功能亮点3.代码实现4.使用方法5. 展示效果6. 代码优化与拓展7. 总结1.

Mybatis 传参与排序模糊查询功能实现

《Mybatis传参与排序模糊查询功能实现》:本文主要介绍Mybatis传参与排序模糊查询功能实现,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、#{ }和${ }传参的区别二、排序三、like查询四、数据库连接池五、mysql 开发企业规范一、#{ }和${ }传参的

Docker镜像修改hosts及dockerfile修改hosts文件的实现方式

《Docker镜像修改hosts及dockerfile修改hosts文件的实现方式》:本文主要介绍Docker镜像修改hosts及dockerfile修改hosts文件的实现方式,具有很好的参考价... 目录docker镜像修改hosts及dockerfile修改hosts文件准备 dockerfile 文

基于SpringBoot+Mybatis实现Mysql分表

《基于SpringBoot+Mybatis实现Mysql分表》这篇文章主要为大家详细介绍了基于SpringBoot+Mybatis实现Mysql分表的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录基本思路定义注解创建ThreadLocal创建拦截器业务处理基本思路1.根据创建时间字段按年进

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整