详解信道容量,信道速率,安全速率的区别

2024-01-01 06:44

本文主要是介绍详解信道容量,信道速率,安全速率的区别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一. 信道容量与信道速率

二. 小结

三. 安全速率与物理层安全

3.1 香农物理层安全模型

3.2 安全信道速率

四. 补充安全中断概率(Secrecy Outage Probability, SOP)

五. 补充安全分集度(Secrecy Diversity Order, SDO)

六. 附信道安全传输经常会出现的缩略词


一. 信道容量与信道速率

先看信道容量C的公式:

C=Blog_2(1+SNR)

其中,B为带宽,SNR为信噪比。信道容量单位是bps,也就是比特每秒。这个与Shannon公式有关,在实际通信系统中,传输速率只能逼近该数值,相当于传输速率的上限。

(以下将是更深层次的解释和拓展)

根据给定最大信道容量的Shannon公式可知,信道容量取决于带宽和信道的SNR这两项物理参数。因此如何利用较小的信道带宽、或在发射功率不变的情况下,尽量取得较大的信道SNR,以获取最大的信道容量是移动通信新技术所追求的重要目标,可以归结为如何提高频谱利用率和功率利用率的两个基本问题。

二. 小结

信道容量可看成信道最大的传输速率。信道速率也就是信息传输速率,代表实际的传输速率。

三. 安全速率与物理层安全

3.1 香农物理层安全模型

物理层安全通信研究的起源可以追溯到 Shannon 信息理论安全保密分析,它可以理解为无线网络的安全通信能力取决于窃听节点可获得的信息量。如上图所示,发射端 Alice 用密钥 K对原始信息 S 加密获得 M,合法接收端 Bob 接收到 M 后用 K 解密获得 S。而窃听者 Eve 没有密钥,因此无法从加密信号 M 中解密出信息 S。此外,Shannon 在论文中也定义了完美安全,即加密信息与传输信息之间的互信息量为零。进一步,Shannon 通过严格的数学推导证明了只有当密钥的熵不小于传输信息的熵,即密钥的长度不小于传输信息的长度时,才能实现无线网络中信息的安全传输。然而现实通信场景中存在多种噪声等干扰,导致完美安全传输很难实现。

3.2 安全信道速率

为了更加贴近实际的无线通信网络,Wyner 在 Shannon 模型(就是上面那张图)的基础上进行了改进,提出了基于噪声信道的窃听模型。为了解决密钥的传输问题,Wyner 采用信道编码来代替密钥的方式。具体过程可以表述为:发射端将要传输的信息 S 进行编码变成长度为 n 的码字 X ,经过有噪信道,合法接收端和窃听者分别接收到信号 Y 和 Z。Wyner 证明了当编码长度 n 足够大时,窃听节点接收到的信号 Z 与信息 S 之间的互信息量为 0。同时还证明了存在一种编码方案,可以使得合法接收端正确接收信息 S 而窃听者无法解码信息 S。进一步地,基于该有噪信道模型,Wyner 还证明了在不使用密钥的前提下,仅依靠发射端、接收端和窃听端信道的差异,可以实现信息在物理层上安全传输。此外,Wyner 还提出安全速率(Secrecy Rate, SR)的概念,即合法传输节点能够安全传输给合法接收端的最大数据速率。

更具体的,安全速率被定义为信道在某一通信时隙能够实现的最大安全传输速率,通常取合法节点的信道容量与窃听节点信道容量的差值,对于加性高斯白噪声(Additive White Gaussian Noise, AWGN)信道,都可以用“一”中的 Shannon 公式计算信道容量。

对于衰落信道,可以用瞬时的接收信噪比来计算瞬时信道速率。利用P代表发射功率,h_b代表发射端与合法接收端之间的信道增益,h_e代表发射端与窃听节点之间的信道增益,N_0代表噪声功率。由此,合法节点的信噪比可以表示为:

\gamma_b=\frac{P|h_b|^2}{N_0}

窃听节点的信噪比可以表示为:

\gamma_e=\frac{P|h_e|^2}{N_0}

四. 补充安全中断概率(Secrecy Outage Probability, SOP)

安全中断概率衡量网络的安全速率小于目标安全速率的概率,即不能够进行安全传输的概率。我们肯定是希望这个概率越小越好。根据以上讨论,其实也可以用窃听信道容量来表示 SOP。
 

五. 补充安全分集度(Secrecy Diversity Order, SDO)

安全分集度定义为:安全中断概率随主信道与窃听信道增益比(Main to Eavesdropper Ratio, MER)变化的快慢程度。利用P_{out}代表安全中断概率,MER代表信道的比值,由此安全分集度的公式如下:

六. 附信道安全传输经常会出现的缩略词

5G The Fifth Generation Mobile Communications 第五代移动通信

6G The Sixth Generation Mobile Communications 第六代移动通信

AF Amplify and Forward 放大转发

AWGN Additive White Gaussian Noise 加性高斯白噪声

BF Beamforming 波束赋形

BPCU Bits Per Channel Use 比特/信道利用

CDF Cumulative Distribution Function 累计分布函数

CD-NOMA Code Domain Non-Orthogonal Multiple Access 码域-非正交多址接入

CLT Central Limit Theorem 中心极限定理

CSI Channel State Information 信道状态信息

DF Decode and Forward 解码转发

EE Energy Efficiency 能量效率

ES Energy Splitting 能量分割

FD Full Duplex 全双工

FDMA Frequency Division Multiple Access 频分多址

HD Half Duplex 半双工

MER Main to Eavesdropper Ratio 主信道与窃听信道增益比

MIMO Multiple Input Multiple Output 多输入多输出

MISO Multiple Input Single Output 多输入单输出

MRC Maximum Ratio Combining 最大比合并

MS Mode Switching 模式转换

NCCSD Non-Central Chi-Square Distribution 非中心的卡方分布

NOMA Non orthogonal Multiple Access 非正交多址接入

OAS Optimal Antenna Selection 最优天线选择

OFDMA Orthogonal Frequency Division Multiple Access 正交频分多址

OMA Orthogonal Multiple Access 正交多址接入

ORAS Optimal Relay Antenna Selection 最优中继-天线选择

ORS Optimal Relay Selection 最优中继选择

PA Power Allocation 功率分配

PDF Probability Density Function 概率密度函数

PD-NOMA Power Domain Non Orthogonal Multiple Access 功率域-非正交多址接入

PIC Parallel Interference Cancellation 并行干扰消除

PLS Physical Layer Security 物理层安全

QoS Quality of Service 服务质量

RAS Relay Antenna Selection 中继-天线选择

RF Radio Frequency 射频

RIS Reconfigurable Intelligent Surface 可重构智能表面

RRAS Random Relay Antenna Selection 随机中继-天线选择

RPR Random Phase Regulation 随机相位调节

SINR Siganl to Interference Plus Noise Ratio 信干噪比

SNR Siganl to Noise Ratio 信噪比

SC Selection Combining 选择合并

SDO Secrecy Diversity Order 安全分集度

SE Spectral Efficiency 频谱效率

SIC Successive Interference Cancellation 串行干扰消除

SOP Secrecy Outage Probability 安全中断概率

SR Secrecy Rate 安全速率

SRAS Suboptimal Relay Antenna Selection 次佳中继-天线选择

TDMA Time Division Multiple Access 时分多址

TS Time Switching 时间切换

ZF Zero Forcing 迫零

这篇关于详解信道容量,信道速率,安全速率的区别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/558432

相关文章

Debezium 与 Apache Kafka 的集成方式步骤详解

《Debezium与ApacheKafka的集成方式步骤详解》本文详细介绍了如何将Debezium与ApacheKafka集成,包括集成概述、步骤、注意事项等,通过KafkaConnect,D... 目录一、集成概述二、集成步骤1. 准备 Kafka 环境2. 配置 Kafka Connect3. 安装 D

Java中ArrayList和LinkedList有什么区别举例详解

《Java中ArrayList和LinkedList有什么区别举例详解》:本文主要介绍Java中ArrayList和LinkedList区别的相关资料,包括数据结构特性、核心操作性能、内存与GC影... 目录一、底层数据结构二、核心操作性能对比三、内存与 GC 影响四、扩容机制五、线程安全与并发方案六、工程

Spring Cloud LoadBalancer 负载均衡详解

《SpringCloudLoadBalancer负载均衡详解》本文介绍了如何在SpringCloud中使用SpringCloudLoadBalancer实现客户端负载均衡,并详细讲解了轮询策略和... 目录1. 在 idea 上运行多个服务2. 问题引入3. 负载均衡4. Spring Cloud Load

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

SQL 中多表查询的常见连接方式详解

《SQL中多表查询的常见连接方式详解》本文介绍SQL中多表查询的常见连接方式,包括内连接(INNERJOIN)、左连接(LEFTJOIN)、右连接(RIGHTJOIN)、全外连接(FULLOUTER... 目录一、连接类型图表(ASCII 形式)二、前置代码(创建示例表)三、连接方式代码示例1. 内连接(I

Go路由注册方法详解

《Go路由注册方法详解》Go语言中,http.NewServeMux()和http.HandleFunc()是两种不同的路由注册方式,前者创建独立的ServeMux实例,适合模块化和分层路由,灵活性高... 目录Go路由注册方法1. 路由注册的方式2. 路由器的独立性3. 灵活性4. 启动服务器的方式5.

Java中八大包装类举例详解(通俗易懂)

《Java中八大包装类举例详解(通俗易懂)》:本文主要介绍Java中的包装类,包括它们的作用、特点、用途以及如何进行装箱和拆箱,包装类还提供了许多实用方法,如转换、获取基本类型值、比较和类型检测,... 目录一、包装类(Wrapper Class)1、简要介绍2、包装类特点3、包装类用途二、装箱和拆箱1、装

Go语言中三种容器类型的数据结构详解

《Go语言中三种容器类型的数据结构详解》在Go语言中,有三种主要的容器类型用于存储和操作集合数据:本文主要介绍三者的使用与区别,感兴趣的小伙伴可以跟随小编一起学习一下... 目录基本概念1. 数组(Array)2. 切片(Slice)3. 映射(Map)对比总结注意事项基本概念在 Go 语言中,有三种主要